Cognitive Science is an interdisciplinary field: it draws on tools and ideas from psychology, neuroscience, linguistics, economics, computer science, and philosophy, with affiliated faculty in each of these disciplines. Psychologists study the computational operations that we use to solve specific tasks; neuroscientists study the implementation of those operations in the brain; linguists study the representations involved in communication; economists study the representations involved in decisions involving uncertainty and reward; computer scientists consider how the processes involved in human cognition fit into a more general theory of computations and a larger space of tasks; and philosophers ask fundamental questions about the nature of representation and computation.

Learning Objectives

Cognitive Science majors will gain fluency in computational methods; a capacity for rigorous and careful thought; a broad understanding of the affiliated disciplines; and a deep understanding of cognition.

Director: John Morrison (Philosophy, Barnard)

Steering Committee:
Mariusz S. Kozak (Music, Columbia)
John McWhorter (Linguistics, Columbia)
John Morrison (Philosophy, Barnard)
Kevin Ochsner (Psychology, Columbia)
Christopher A.B. Peacocke (Philosophy, Columbia)
Robert Remez (Psychology, Barnard)
Ann Senghas (Psychology, Barnard)
Michael Woodford (Economics, Columbia)
Rebecca Wright (Computer Science, Barnard)

Affiliated Faculty:
Mariam Aly (Psychology, Columbia)
Dima Amso (Psychology, Columbia)
Christopher Baldassano (Psychology, Columbia)
Peter Balsam (Neuroscience & Behavior; Psychology, Barnard)
Sian Beilock (President, Barnard)
Akeel Bilgrami (Psychology, Columbia)
Lila Davachi (Psychology, Columbia)
Mark Dean (Economics, Columbia)
Aaron A. Fox (Music, Columbia)
Melissa Fusco (Philosophy, Columbia)
Larisa Heiphetz (Psychology, Columbia)
Jenann Ismael (Philosophy, Columbia)
Niko Kriegeskorte (Psychology, Columbia)
Karen Lewis (Philosophy, Barnard)
Caroline Marvin (Psychology, Columbia)
Koleen McCrink (Psychology, Barnard)
Janet Metcalfe (Psychology, Columbia)
Christos Papadimitriou (Computer Science, Columbia)
Daphna Shohamy (Psychology, Columbia)
Rae Silver (Psychology, Columbia)
Lisa Son (Psychology, Barnard)
Alfredo Spagna (Psychology, Columbia)
Herbert Terrace (Psychology, Columbia)
Kim Tottenham (Psychology, Columbia)
Carl Vondrick (Computer Science, Columbia)
Alex White (Neuroscience and Behavior, Barnard)
Keren Yarhi-Milo (Political Science, Columbia)

A major in Cognitive Science consists of seven required courses, four electives, and a year-long senior project (one course each semester) with an attached majors’ seminar (COGS UN3901 in the fall and COGS UN3902 in the spring, 1 point each). The minimum number of courses is 15 and the minimum number of points is 41.

1. Required courses:
 - COGS UN1001 Introduction to Cognitive Science
 - One course in each of four areas: psychology, neuroscience, philosophy, and linguistics.
 - Two courses in a fifth area: mathematical and computational methods. These two courses must be selected in consultation with the program director to make sure they aren’t redundant.

Please see below for the lists of courses approved to count in each area (all these courses may also be used as electives). Please note that on a case-by-case basis, the program director can give students permission to use other courses to satisfy a requirement. It is possible to satisfy all of the requirements by taking courses without prerequisites.

2. Electives:

Four courses, building towards a specialization, and approved by the program director, perhaps in consultation with the expected advisor of the senior project.

Please see below for the list of courses approved to count as electives. Please note that other courses may be approved on a case-by-case basis; students should talk with the program director.

3. Senior Project

The senior project ("capstone experience") is a year-long project on a student’s area of specialization under the supervision of a chosen advisor. The project could be an experiment or a paper. Students register for the senior project through their sponsor’s department (3 credits per semester). Students also register for a year-long majors’ seminar (COGS UN3901 Senior Project Seminar in the fall and COGS UN3902 Senior Project Seminar in the spring, 1 credit per semester). The seminar is an opportunity for students to present their projects to each other.
Courses approved to count in each area:

Psychology
- NSBV BC3380: Cognitive Neuroscience
- PSYC BC2110: PERCEPTION-LECTURE
- PSYC BC2115: COGNITIVE PSYCHOLOGY - LEC
- PSYC UN2220: Cognition: Memory and Stress
- PSYC UN2430: COGNITIVE NEUROSCIENCE

Neuroscience
- NSBV BC1001: INTRODUCTION TO NEUROSCIENCE
- PSYC UN2450: Behavioral Neuroscience

Philosophy
- PHIL UN2655: COGNITIVE SCIENCE AND PHILOSOPHY
- PHIL UN3252: Philosophy of Language and Mind
- PHIL UN3655: TOPICS IN COGNITIVE SCIENCE AND PHILOSOPHY
- PHIL UN3912: Seminar

Please note that only the "Perception" section of PHIL UN3912 counts.

Linguistics
- LING UN3101: Introduction to Linguistics

Mathematical and Computational Methods

Logic and Decision Theory:
- ECON GU4850: Cognitive Mechanisms and Economic Behavior
- PHIL UN1401: Introduction to Logic
- PHIL UN3411: SYMBOLIC LOGIC
- PHIL GU4561: Probability and Decision Theory
- PSYC UN2235: THINKING AND DECISION MAKING

Statistics:
- ECON BC2411: Statistics for Economics
- PSYC BC1101: STATISTICS LECTURE AND RECITATION
- PSYC UN1610: Introductory Statistics for Behavioral Scientists
- STAT UN1101: Introduction to Statistics
- STAT UN1201: Calculus-Based Introduction to Statistics

Computer Science:
- COMS BC1016: Introduction to Computational Thinking and Data Science
- COMS W1001: Introduction to Information Science
- COMS W1002: COMPUTING IN CONTEXT
- COMS W1004: Introduction to Computer Science and Programming in Java
- COMS W1007: Honors Introduction to Computer Science
- COMS W3134: Data Structures in Java
- COMS W3136: Data Structures with C/C++
- COMS W3137: Honors Data Structures and Algorithms
- STEM BC2223: Computer Programming for the Behavioral Sciences

Courses approved to count as electives:

Anthropology:
- ANTH UN1009: Introduction to Language and Culture

Cognitive Science:
- COGS GU4050: Natural and Artificial Neural Networks
- COGS GU4051: Natural and Artificial Neural Networks Lab
- COMS W4705: Natural Language Processing
- COMS W4731: Computer Vision I: First Principles
- COMS W4771: Machine Learning
- COMS W4772: Advanced Machine Learning
- ECON GU4020: Economics of Uncertainty and Information
- ECON GU4840: BEHAVIORAL ECONOMICS
- ECON GU4860: Behavioral Finance
- LING GU4202: COGNITIVE LINGUISTICS
- LING GU4206: Advanced Grammar and Grammars
- LING GU4376: Phonetics and Phonology
- LING GU4903: Syntax
- NSBV BC3381: Visual Neuroscience: From the Eyeball to the Mind’s Eye
- MUSI GU4325: Introduction to Cognitive Musicology
- PHIL UN1001: Introduction to Philosophy
- PHIL UN2685: Introduction to Philosophy of Language
- PHIL UN3685: PHILOSOPHY OF LANGUAGE
- PHIL UN3840: The Nature and Significance of Animal Minds
- PHIL GU4495: Perception
- PHIL GU4660: Philosophy of Mind
- PSYC BC1001: INTRODUCTION TO PSYCHOLOGY
- PSYC BC2107: PSYCHOLOGY OF LEARNING - LEC
- PSYC BC2129: DEVELOPMENTAL PSYCHOLOGY-LEC
- PSYC BC2163: Human Learning and Memory
- PSYC BC3164: Perception and Language
- PSYC BC3369: Language Development
- PSYC BC3372: Comparative Cognition
- PSYC BC3381: Theory of Mind and Intentionality
- PSYC BC3384: Social Cognition
- PSYC BC3390: Canine Cognition
- PSYC BC3394: Metacognition
- PSYC BC3399: Humans and Machines
- PSYC UN2250: Evolution of Cognition
- PSYC UN2280: Developmental Psychology
- PSYC UN3270: Computational Approaches to Human Vision (Seminar)
- PSYC UN3290: Self: A Cognitive Exploration (Seminar)
- PSYC UN3445: The Brain & Memory
- PSYC UN3450: Evolution of Intelligence, Animal Communication, # Language
- PSYC GU4202: Theories of Change in Human Development
- PSYC GU4222: The Cognitive Neuroscience of Aging (Seminar)
- PSYC GU4223: Memory and Executive Function Thru the Lifespan
- PSYC GU4225: CONSCIOUSNESS # ATTENTION
- PSYC GU4229: Attention and Perception
- PSYC GU4239: Cognitive neuroscience of narrative and film
- PSYC GU4242: Evolution of Language (Seminar)
Required Courses

Required for all Cognitive Science majors:

COGS UN1001 Introduction to Cognitive Science. 3.00 points.
The goal of cognitive science — and of this course — is to understand how the mind works. Trying to understand our own minds is perhaps the most ambitious and exciting (and difficult) project in all of science, and this project requires tools drawn from fields including experimental psychology, computer science and artificial intelligence, linguistics, vision science, philosophy, anthropology, behavioral economics, and several varieties of neuroscience (among others). This course will introduce you to the major tools and theories from these areas, as they relate to the study of the mind. We will employ these perspectives while exploring the nature of mental processes such as perception, reasoning, memory, attention, imagery, language, intelligence, decision-making, morality — and even attraction and love. In sum, this course will expose you to cognitive science, the assumptions on which it rests, and many of the most important and fascinating results obtained so far.

COGS UN3901 Senior Project Seminar. 1 point.
Discussion of senior research projects during the fall and spring terms that culminate in written and oral senior theses. Each project must be supervised by a cognitive scientist working at Barnard or Columbia.

COGS UN3902 Senior Project Seminar. 1 point.
Discussion of senior research projects during the fall and spring terms that culminate in written and oral senior theses. Each project must be supervised by a cognitive scientist working at Barnard or Columbia.

Psychology:

NSBV BC3380 Cognitive Neuroscience. 4 points.
Prerequisites: BC1001 and permission of the instructor. Enrollment limited to 20 students.
Exposition of research and theory in neuroscience with an emphasis on the use of neural imaging techniques (EEG, evoked potentials, MEG, PET, fMRI) for exploring sensation, perception, and cognition in the healthy, intact brain.

PSYC BC2110 PERCEPTION-LECTURE. 3.00 points.
Prerequisites: PSYC BC1001 or permission of the instructor. Lecture course covering an introduction to problems, methods, and research in perception. Discussion of psychological studies of seeing, hearing, touching, tasting, and smelling. Note that this lecture can be taken without its affiliated lab, PSYC BC2109, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1480 Perception and Attention; and PSYC UN2230 Perception and Sensory Processes.

Fall 2022: PSYC BC2110
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 2110 001/00225 M W 10:10am - 11:25am Robert Remez 3.00 0/55 Room TBA

PSYC BC2115 COGNITIVE PSYCHOLOGY - LEC. 3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: BC1001 or permission of the instructor. Lecture covering selected topics illustrating the methods, findings, and theories of contemporary cognitive psychology. Topics include attention, memory, categorization, perception, and decision making. Special topics include neuropsychology and cognitive neuroscience. Note that this lecture can be taken without its affiliated lab, PSYC BC2114, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2220 Cognition: Memory and Stress; and PSYC UN2210 Cognition: Basic Processes.

Spring 2022: PSYC BC2115
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 2115 001/00580 M W 11:40am - 12:55pm Lisa Son 3.00 65/70 328 Milbank Hall

PSYC UN2220 Cognition: Memory and Stress. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Attendance at the first class is mandatory.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor's permission.
Memory, attention, and stress in human cognition.

PSYC UN2430 COGNITIVE NEUROSCIENCE. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: PSYC UN1001 or equivalent introductory course in Psychology
Prerequisites: PSYC UN1001 or equivalent introductory course in Psychology
This course provides an in-depth survey of data and models of a wide variety of human cognitive functions. Drawing on behavioral, neuropsychological, and neuroimaging research, the course explores the neural mechanisms underlying complex cognitive processes, such as perception, memory, and decision making. Importantly, the course examines the logic and assumptions that permit us to interpret brain activity in psychological terms.

Spring 2022: PSYC UN2430
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 2430 001/11060 M W 2:40pm - 3:55pm Mariam Aly 3.00 135/150 501 Schermerhorn Hall

Neuroscience
NSBV BC1001 INTRODUCTION TO NEUROSCIENCE. 3 points.
This course is required for all the other courses offered in Neuroscience and Behavior. The course introduces students to the anatomy and physiology of the nervous system. The topics include the biological structure of the nervous system and its different cell types, the basis of the action potential, principles of neurotransmission, neuronal basis of behavior, sleep/wake cycles, and basic aspects of clinical neuroscience.

SPRING 2022: NSBV BC1001
Course Number Section/Call Number Times/Location Instructor Points Enrollment
NSBV 1001 001/00056 T Th 2:40pm - 3:55pm 405 Milbank Hall Alex White 3 77/90

FALL 2022: NSBV BC1001
Course Number Section/Call Number Times/Location Instructor Points Enrollment
NSBV 1001 001/00606 T Th 8:40am - 9:55am Room TBA 0: FACULTY 3 0/90

PSYC UN2450 Behavioral Neuroscience. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor's permission.
Examines the principles governing neuronal activity, the role of neurotransmitter systems in memory and motivational processes, the presumed brain dysfunctions that give rise to schizophrenia and depression, and philosophical issues regarding the relationship between brain activity and subjective experience.

SPRING 2022: PSYC UN2450
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 2450 001/11361 M W 10:10am - 11:25am 402 Chandler Alfredo Spagna 3 95/110

PHIL UN3912 Seminar. 3 points.
Required of senior majors, but also open to junior majors, and junior and senior concentrators who have taken at least four philosophy courses. This exploration will typically involve writing a substantial research paper. Capped at 20 students with preference to philosophy majors.

LING UN3101 Introduction to Linguistics. 3 points.
An introduction to the study of language from a scientific perspective. The course is divided into three units: language as a system (sounds, morphology, syntax, and semantics), language in context (in space, time, and community), and language of the individual (psycholinguistics, errors, aphasia, neurology of language, and acquisition). Workload: lecture, weekly homework, and final examination.

PHIL UN3252 Philosophy of Language and Mind. 3 points.
This course will provide an introduction to meaning, reference, understanding, and content in language, thought, and perception. A central concern will be the question of the relation of meaning to truth-conditions, and what is involved in language and thought successfully latching on to reality. If you have not already taken an elementary course in first order logic, you will need to catch up in that area to understand some crucial parts of the course. All the same, the primary concerns of the course will be philosophical, rather than technical.

PHIL UN3655 Topics in Cognitive Science and Philosophy. 3.00 points.
This course will focus on one topic at the intersection of cognitive science and philosophy. Potential topics include free will, consciousness, modularity, mental representation, probabilistic inference, the language of thought, and the computational theory of mind.
ECON GU4850 Cognitive Mechanisms and Economic Behavior. 3 points.
Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1120
Standard economic theory seeks to explain human behavior (especially in "economic" settings, such as markets) in terms of rational choice, which means that the choices that are made can be predicted on the basis of what would best serve some coherent objective, under an objectively correct understanding of the predictable consequences of alternative actions. Observed behavior often seems difficult to reconcile with a strong form of this theory, even if incentives clearly have some influence on behavior; and the course will discuss empirical evidence (both from laboratory experiments and observations "in the field") for some well-established "anomalies." But beyond simply cataloguing anomalies for the standard theory, the course will consider the extent to which departures from a strong version of rational choice theory can be understood as reflecting cognitive processes that are also evident in other domains such as sensory perception; examples from visual perception will receive particular attention. And in addition to describing what is known about how the underlying mechanisms work (something that is understood in more detail in sensory contexts than in the case of value-based decision making), the course will consider the extent to which such mechanisms — while "suboptimal" from a normative standpoint that treats perfect knowledge of one's situation as costless and automatic — might actually represent efficient uses of the limited information and bounded-information-processing resources available to actual people (or other organisms). Thus the course will consider both ways in which the realism of economic analysis may be improved by taking into account cognitive processes, and ways in which understanding of cognitive processes might be advanced by considering the "economic" problem of efficient use of limited (cognitive) resources.

Fall 2022: ECON GU4850
Course Number Section/Call Number Times/Location Instructor Points Enrollment
ECON 4850 001/11898 M W 11:40am - 12:55pm Room TBA Michael Woodford 3 0/65

PHIL UN1401 Introduction to Logic. 3 points.
Explicit criteria for recognizing valid and fallacious arguments, together with various methods for schematizing discourse for the purpose of logical analysis. Illustrative material taken from science and everyday life.

Spring 2022: PHIL UN1401
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PHIL 1401 001/00162 M W 6:10pm - 7:25pm 405 Milbank Hall Christopher Proobeil 3 37/80

PHIL UN3411 SYMBOLIC LOGIC. 4.00 points.
Corequisites: PHILV3413 Required Discussion Section (0 points).
Advanced introduction to classical sentential and predicate logic. No previous acquaintance with logic is required; nonetheless a willingness to master technicalities and to work at a certain level of abstraction is desirable.

Spring 2022: PHIL UN3411
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PHIL 3411 001/11998 T Th 1:10pm - 2:25pm 614 Schermerhorn Hall Achille Varzi 4.00 104/100
PHIL 3411 001/18574 T Th 1:10pm - 2:25pm 614 Schermerhorn Hall Achille Varzi 4.00 4/5

Fall 2022: PHIL UN3411
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PHIL 3411 001/11474 M W 10:10am - 11:25am Room TBA Tamar Lando 4.00 0/80

PHIL GU4561 Probability and Decision Theory. 3 points.
Examines interpretations and applications of the calculus of probability including applications as a measure of degree of belief, degree of confirmation, relative frequency, a theoretical property of systems, and other notions of objective probability or chance. Attention to epistemological questions such as Hume's problem of induction, Goodman's problem of projectibility, and the paradox of confirmation.

Fall 2022: PHIL GU4561
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PHIL 4561 001/11511 F 12:10pm - 2:00pm 716 Philosophy Hall Haim Gaifman 3 0/40

PSYC UN2235 THINKING AND DECISION MAKING. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: an introductory course in psychology. Models of judgment and decision making in both certain and uncertain or risky situations, illustrating the interplay of top-down (theory-driven) and bottom-up (data-driven) processes in creating knowledge. Focuses on how individuals do and should make decisions, with some extensions to group decision making and social dilemmas

Spring 2022: PSYC UN2235
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 2235 001/11048 T Th 11:40am - 12:55pm 301 Schermerhorn Hall Katherine Fox 3.00 141/145

Statistics

ECON BC2411 Statistics for Economics. 4 points.
Elementary computational methods in statistics. Basic techniques in regression analysis of econometric models. One-hour weekly recitation sessions to complement lectures.

Fall 2022: ECON BC2411
Course Number Section/Call Number Times/Location Instructor Points Enrollment
ECON 2411 001/00383 T Th 7:40pm - 8:55pm Room TBA 0. FACULTY 4 0/50
PSYC BC1101 STATISTICS LECTURE AND RECITATION. 4.00 points.
Prerequisites: BC1001 and instructor permission. Enrollment limited to 20 students per recitation section.
Prerequisite (or co-requisite): PSYC BC1001. Lecture course and associated recitation section introducing students to statistics and its applications to psychological research. The course covers basic theory, conceptual underpinnings, and common statistics. The following Columbia University courses are considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: STAT UN1001 Introduction to Statistical Reasoning; STAT UN1001 Introduction to Statistics; STAT UN1101 Introduction to Statistics; STAT UN1201 Statistical Reasoning.

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1101</td>
<td>001/00620</td>
<td>T Th 10:10am - 11:25am 207 Milbank Hall</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>19/20</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>001/00620</td>
<td>Th 12:10pm - 2:00pm 222 Milbank Hall</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>19/20</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>002/00621</td>
<td>T Th 10:10am - 11:25am 207 Milbank Hall</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>20/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>002/00621</td>
<td>Th 2:10pm - 4:00pm 222 Milbank Hall</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>20/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>003/00623</td>
<td>M W 10:10am - 11:25am 324 Milbank Hall</td>
<td>Mariel Roberts</td>
<td>4.00</td>
<td>20/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>003/00623</td>
<td>M 2:10pm - 4:00pm 222 Milbank Hall</td>
<td>Mariel Roberts</td>
<td>4.00</td>
<td>20/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>004/00624</td>
<td>M W 10:10am - 11:25am 324 Milbank Hall</td>
<td>Mariel Roberts</td>
<td>4.00</td>
<td>20/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>004/00624</td>
<td>W 2:10pm - 4:00pm 516 Milstein Center</td>
<td>Mariel Roberts</td>
<td>4.00</td>
<td>20/18</td>
</tr>
</tbody>
</table>

PSYC UN1610 Introductory Statistics for Behavioral Scientists. 4 points.
Lecture and lab. Priority given to psychology majors. Fee $70.

Prerequisites: PSYC UN1001 or PSYC UN1010 Recommended preparation: one course in behavioral science and knowledge of high school algebra.
Corequisites: PSYC UN1611 Introduction to statistics that concentrates on problems from the behavioral sciences.

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1610</td>
<td>001/11045</td>
<td>T Th 10:10am - 11:25am 208 Schermerhorn Hall</td>
<td>Christopher Baldassano</td>
<td>4</td>
<td>45/50</td>
</tr>
</tbody>
</table>

PSYC UN1101 Introduction to Statistics. 3 points.

Prerequisites: intermediate high school algebra. Designed for students in fields that emphasize quantitative methods. Graphical and numerical summaries, probability, theory of sampling distributions, linear regression, analysis of variance, confidence intervals and hypothesis testing. Quantitative reasoning and data analysis. Practical experience with statistical software. Illustrations are taken from a variety of fields. Data-collection/analysis project with emphasis on study designs is part of the coursework requirement.

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 1101</td>
<td>001/13783</td>
<td>T Th 6:10pm - 7:25pm 602 Hamilton Hall</td>
<td>Ha Nguyen</td>
<td>3</td>
<td>73/86</td>
</tr>
<tr>
<td>STAT 1101</td>
<td>002/13789</td>
<td>T Th 10:10am - 11:25am 702 Hamilton Hall</td>
<td>David Rios</td>
<td>3</td>
<td>68/86</td>
</tr>
<tr>
<td>STAT 1101</td>
<td>003/13790</td>
<td>M W 6:10pm - 7:25pm 717 Hamilton Hall</td>
<td>Cristian Pasarica</td>
<td>3</td>
<td>60/86</td>
</tr>
</tbody>
</table>
STAT UN1201 Calculus-Based Introduction to Statistics. 3 points.

Prerequisites: one semester of calculus.
Designed for students who desire a strong grounding in statistical concepts with a greater degree of mathematical rigor than in STAT W1111. Random variables, probability distributions, pdf, cdf, mean, variance, correlation, conditional distribution, conditional mean and conditional variance, law of iterated expectations, normal, chi-square, F and t distributions, law of large numbers, central limit theorem, parameter estimation, unbiasedness, consistency, efficiency, hypothesis testing, p-value, confidence intervals, maximum likelihood estimation. Serves as the pre-requisite for ECON W3412.

Spring 2022: STAT UN1201
Course Number Section/Call Times/Location Instructor Points Enrollment
STAT 1201 001/13792 M 10:10am - 11:25am 310 Fayerweather Philip Protter 3 53/86
STAT 1201 003/13794 T Th 10:10am - 11:25am 517 Hamilton Hall Joyce Robbins 3 84/86
STAT 1201 004/13795 M W 6:10pm - 7:25pm 517 Hamilton Hall Li Haoran 3 60/86

Computer Science

COMS BC1016 Introduction to Computational Thinking and Data Science. 3.00 points.
This course and its co-requisite lab course will introduce students to the methods and tools used in data science to obtain insights from data. Students will learn how to analyze data arising from real-world phenomena while mastering critical concepts and skills in computer programming and statistical inference. The course will involve hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. The course is ideal for students looking to increase their digital literacy and expand their use and understanding of computation and data analysis across disciplines. No prior programming or college-level math background is required.

Spring 2022: COMS BC1016
Course Number Section/Call Times/Location Instructor Points Enrollment
COMS 1016 001/00047 T Th 11:40am - 12:55pm 504 Diana Center Adam Poliak 3.00 72/81

COMS W1001 Introduction to Information Science. 3 points.
Lect: 3.
Basic introduction to concepts and skills in Information Sciences: human-computer interfaces, representing information digitally, organizing and searching information on the internet, principles of algorithmic problem solving, introduction to database concepts, and introduction to programming in Python.

COMS W1002 COMPUTING IN CONTEXT. 4.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 or COMS W1002

Fall 2022: COMS W1002
Course Number Section/Call Times/Location Instructor Points Enrollment
COMS 1002 001/10798 T Th 1:10pm - 2:25pm Room TBA Adam Cannon 4.00 0/200
COMS 1002 002/10984 T Th 2:40pm - 3:55pm Room TBA Adam Cannon 4.00 0/200

COMS W1004 Introduction to Computer Science and Programming in Java. 3 points.
Lect: 3.
A general introduction to computer science for science and engineering students interested in majoring in computer science or engineering. Covers fundamental concepts of computer science, algorithmic problem-solving capabilities, and introductory Java programming skills. Assumes no prior programming background. Columbia University students may receive credit for only one of the following two courses: 1004 or 1005.

Spring 2022: COMS W1004
Course Number Section/Call Times/Location Instructor Points Enrollment
COMS 1004 001/12415 T Th 5:40pm - 6:55pm 417 International Affairs Bldg Adam Cannon 3 289/398
COMS 1004 002/12416 T Th 7:10pm - 8:25pm 417 International Affairs Bldg Adam Cannon 3 68/398

Fall 2022: COMS W1004
Course Number Section/Call Times/Location Instructor Points Enrollment
COMS 1004 001/10985 M W 2:40pm - 3:55pm Room TBA Paul Blaer 3 0/398
COMS 1004 002/10986 M W 5:40pm - 6:55pm Room TBA Paul Blaer 3 0/164

COMS W1007 Honors Introduction to Computer Science. 3 points.
Lect: 3.
Prerequisites: AP Computer Science with a grade of 4 or 5 or similar experience.
An honors-level introduction to computer science, intended primarily for students considering a major in computer science. Computer science as a science of abstraction. Creating models for reasoning about and solving problems. The basic elements of computers and computer programs. Implementing abstractions using data structures and algorithms. Taught in Java.
COMS W3134 Data Structures in Java. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (COMS W1004) or knowledge of Java.
Data types and structures: arrays, stacks, singly and doubly linked lists, queues, trees, sets, and graphs. Programming techniques for processing such structures: sorting and searching, hashing, garbage collection. Storage management. Rudiments of the analysis of algorithms. Taught in Java. Note: Due to significant overlap, students may receive credit for only one of the following three courses: COMS W3134, COMS W3136, COMS W3137.

COMS W3136 Data Structures with C/C++. 4 points.
Prerequisites: (COMS W1004) or (COMS W1005) or (COMS W1007) or (ENGI E1006)
A second programming course intended for nonmajors with at least one semester of introductory programming experience. Basic elements of programming in C and C++, array-based data structures, heaps, linked lists, C programming in UNIX environment, object-oriented programming in C++, trees, graphs, generic programming, hash tables. Due to significant overlap, students may only receive credit for either COMS W3134, W3136, or W3137.

COMS W3137 Honors Data Structures and Algorithms. 4 points.
Prerequisites: (COMS W1004) or (COMS W1007)
Corequisites: COMS W3203
An honors introduction to data types and structures: arrays, stacks, singly and doubly linked lists, queues, trees, sets, and graphs. Programming techniques for processing such structures: sorting and searching, hashing, garbage collection. Storage management. Design and analysis of algorithms. Taught in Java. Note: Due to significant overlap, students may receive credit for only one of the following three courses: COMS W3134, W3136, or W3137.

STEM BC2223 Computer Programming for the Behavioral Sciences. 4 points.
Students will learn how to write computer programs that can test theories and predictions that arise in the behavioral sciences. For students with little or no programming background.

Electives

ANTH UN1009 Introduction to Language and Culture. 3 points.
This is an introduction to the study of the production, interpretation, and reproduction of social meanings as expressed through language. In exploring language in relation to culture and society, it focuses on how communication informs and transforms the sociocultural environment.

COGS GU4050 Natural and Artificial Neural Networks. 3.00 points.
Artificial neural networks can do amazing things. They can play chess, recognize faces, predict human behavior, learn language, and create art. Natural neural networks -- that is to say, brains -- can do many of the same things, often a little more clumsily. But, unlike artificial networks, they can switch seamlessly between two tasks, learn to perform them without supervision, and do not need to be told to -- actually, they can choose to refuse. Brains provided the initial inspiration for the artificial networks, which is why we call them 'artificial neural networks.' But how deep are the similarities between the two? Do they share more than a few abilities, a similar structure, and a common nomenclature?

COGS GU4051 Natural and Artificial Neural Networks Lab. 1.00 point.
Understanding the powers and limitations of artificial neural networks requires exposure to both concepts and practice. This lab section focuses on the latter, supplementing the conceptual framework from the lecture, Natural and Artificial Neural Networks. The lab focuses on giving students without a background in computer science hands-on experience with basic programming in Python, tools for data science, and a variety of machine learning algorithms.
COMS W4705 Natural Language Processing. 3 points.
Lect: 3.

Prerequisites: (COMS W3134 or COMS W3136 or COMS W3137) or the instructor's permission.
Computational approaches to natural language generation and understanding. Recommended preparation: some previous or concurrent exposure to AI or Machine Learning. Topics include information extraction, summarization, machine translation, dialogue systems, and emotional speech. Particular attention is given to robust techniques that can handle understanding and generation for the large amounts of text on the Web or in other large corpora. Programming exercises in several of these areas.

Spring 2022: COMS W4705

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4705</td>
<td>001/12441</td>
<td>M W 4:10pm - 5:25pm 207 Mathematics Building</td>
<td>Zhou Yu</td>
<td>3</td>
<td>105/130</td>
</tr>
<tr>
<td>COMS 4705</td>
<td>002/17846</td>
<td>W 7:00pm - 9:30pm 501 Schermerhorn Hall</td>
<td>Yassine Benajiba</td>
<td>3</td>
<td>164/175</td>
</tr>
</tbody>
</table>

COMS W4731 Computer Vision I: First Principles. 3.00 points.
Lect: 3.

Prerequisites: Students without any of these prerequisites are advised to contact the instructor prior to taking the course.
Prerequisites: Fundamentals of calculus, linear algebra, and C programming. Students without any of these prerequisites are advised to contact the instructor prior to taking the course. Introductory course in computer vision. Topics include image formation and optics, image sensing, binary images, image processing and filtering, edge extraction and boundary detection, region growing and segmentation, pattern classification methods, brightness and reflectance, shape from shading and photometric stereo, texture, binocular stereo, optical flow and motion, 2D and 3D object representation, object recognition, vision systems and applications.

Fall 2022: COMS W4731

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4731</td>
<td>001/11024</td>
<td>M W 2:40pm - 3:55pm Room TBA</td>
<td>Daniel Bauer</td>
<td>3</td>
<td>0/110</td>
</tr>
</tbody>
</table>

COMS W4771 Machine Learning. 3 points.
Lect: 3.

Prerequisites: Any introductory course in linear algebra and any introductory course in statistics are both required. Highly recommended: COMS W4701 or knowledge of Artificial Intelligence. Topics from generative and discriminative machine learning including least squares methods, support vector machines, kernel methods, neural networks, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models and hidden Markov models. Algorithms implemented in MATLAB.

Spring 2022: COMS W4771

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4771</td>
<td>001/12446</td>
<td>T Th 1:10pm - 2:25pm 428 Pupin Laboratories</td>
<td>Nakul Verma</td>
<td>3</td>
<td>90/147</td>
</tr>
<tr>
<td>COMS 4771</td>
<td>002/12447</td>
<td>T Th 2:40pm - 3:55pm 501 Northwest Corner</td>
<td>Nakul Verma</td>
<td>3</td>
<td>78/164</td>
</tr>
<tr>
<td>COMS 4771</td>
<td>V01/18249</td>
<td>V Th 5:30pm - 6:45pm 501 Northwest Corner</td>
<td>Nakul Verma</td>
<td>3</td>
<td>11/99</td>
</tr>
</tbody>
</table>

COMS W4772 Advanced Machine Learning. 3 points.
Lect: 3.

Prerequisites: (COMS W4771) or instructor's permission; knowledge of linear algebra & introductory probability or statistics is required. An exploration of advanced machine learning tools for perception and behavior learning. How can machines perceive, learn from, and classify human activity computationally? Topics include appearance-based models, principal and independent components analysis, dimensionality reduction, kernel methods, manifold learning, latent models, regression, classification, Bayesian methods, maximum entropy methods, real-time tracking, extended Kalman filters, time series prediction, hidden Markov models, factorial HMMS, input-output HMMS, Markov random fields, variational methods, dynamic Bayesian networks, and Gaussian/Dirichlet processes. Links to cognitive science.

Fall 2022: COMS W4772

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4772</td>
<td>001/11027</td>
<td>T Th 2:40pm - 3:55pm Room TBA</td>
<td>Nakul Verma</td>
<td>3</td>
<td>0/110</td>
</tr>
</tbody>
</table>

ECON GU4020 Economics of Uncertainty and Information. 3 points.
Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1201 Topics include behavior uncertainty, expected utility hypothesis, insurance, portfolio choice, principle agent problems, screening and signaling, and information theories of financial intermediation.
ECON GU4840 BEHAVIORAL ECONOMICS. 3.00 points.
Prerequisites: ECON UN3211 and ECON UN3213
Prerequisites: ECON UN3211 and ECON UN3213 Within economics, the standard model of behavior is that of a perfectly rational, self interested utility maximizer with unlimited cognitive resources. In many cases, this provides a good approximation to the types of behavior that economists are interested in. However, over the past 30 years, experimental and behavioral economists have documented ways in which the standard model is not just wrong, but is wrong in ways that are important for economic outcomes. Understanding these behaviors, and their implications, is one of the most exciting areas of current economic inquiry. The aim of this course is to provide a grounding in the main areas of study within behavioral economics, including temptation and self control, fairness and reciprocity, reference dependence, bounded rationality and choice under risk and uncertainty. For each area we will study three things: 1. The evidence that indicates that the standard economic model is missing some important behavior 2. The models that have been developed to capture these behaviors 3. Applications of these models to (for example) finance, labor and development economics. As well as the standard lectures, homework assignments, exams and so on, you will be asked to participate in economic experiments, the data from which will be used to illustrate some of the principals in the course. There will also be a certain small degree of classroom ‘flipping’, with a portion of many lectures given over to group problem solving. Finally, an integral part of the course will be a research proposal that you must complete by the end of the course, outlining a novel piece of research that you would be interested in doing.

ECON GU4860 Behavioral Finance. 3 points.
Prerequisites: ECON UN3211 and ECON UN3213 and ECON UN3412
Neoclassical finance theory seeks to explain financial market valuations and fluctuations in terms of investors having rational expectations and being able to trade without costs. Under these assumptions, markets are efficient in that stocks and other assets are always priced just right. The efficient markets hypothesis (EMH) has had an enormous influence over the past 50 years on the financial industry, from pricing to financial innovations, and on policy makers, from how markets are regulated to how monetary policy is set. But there was very little in prevailing EMH models to suggest the instabilities associated with the Financial Crisis of 2008 and indeed with earlier crises in financial market history. This course seeks to develop a set of tools to build a more robust model of financial markets that can account for a wider range of outcomes. It is based on an ongoing research agenda loosely dubbed “Behavioral Finance”, which seeks to incorporate more realistic assumptions concerning human rationality and market imperfections into finance models. Broadly, we show in this course that limitations of human rationality can lead to bubbles and busts such as the Internet Bubble of the mid-1990s and the Housing Bubble of the mid-2000s; that imperfections of markets — such as the difficulty of short-selling assets — can cause financial markets to undergo sudden and unpredictable crashes; and that agency problems or the problems of institutions can create instabilities in the financial system as recently occurred during the 2008 Financial Crisis. These instabilities in turn can have feedback effects to the performance of the real economy in the form of corporate investments.

LING GU4202 COGNITIVE LINGUISTICS. 3.00 points.
Prerequisites: LING UN3101
Reading and discussion of scholarly literature on the cognitive approach to language, including: usage-oriented approaches to language, frame semantics, construction grammar, theories of conceptual metaphor and mental spaces; alongside of experimental research on language acquisition, language memory, prototypical and analogous thinking, and the role of visual imagery in language processing.

LING GU4206 Advanced Grammar and Grammars. 3 points.
Prerequisites: LING UN3101 LING W3101.
An investigation of the possible types of grammatical phenomena (argument structure, tense/aspect/mood, relative clauses, classifiers, and deixis). This typological approach is enriched by the reading of actual grammars of languages from Asia, Africa, Australia, and the Americas in which grammatical descriptions are read with an eye to important notional concepts of grammar: reference and categorization, case and role of arguments with predicates (ergativity), tense/aspect/mood. Discussion of meaning is combined with attention to expression (that is, morphology), which yanks our attention towards language change (grammaticalization).
LING GU4376 Phonetics and Phonology. 3 points.
Prerequisites: LING UN3101
An investigation of the sounds of human language, from the perspective of phonetics (articulation and acoustics, including computer-aided acoustic analysis) and phonology (the distribution and function of sounds in individual languages).

Spring 2022: LING GU4376

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LING 4376</td>
<td>001/12144</td>
<td>M W 11:40am - 12:55pm</td>
<td>Meredith Landman</td>
<td>3</td>
<td>24/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>602 Northwest Corner</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LING GU4903 Syntax. 3 points.
Prerequisites: LING UN3101
Syntax - the combination of words - has been at the center of the Chomskyan revolution in Linguistics. This is a technical course which examines modern formal theories of syntax, focusing on later versions of generative syntax (Government and Binding) with secondary attention to alternative models (HPSG, Categorial Grammar).

Fall 2022: LING GU4903

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LING 4903</td>
<td>001/10588</td>
<td>T Th 11:40am - 12:55pm</td>
<td>Meredith Landman</td>
<td>3</td>
<td>0/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSBV BC3381 Visual Neuroscience: From the Eyeball to the Mind's Eye. 4.00 points.
By absorbing electromagnetic radiation through their eyes, people are able to catch frisbees, recognize faces, and judge the beauty of art. For most of us, seeing feels effortless. That feeling is misleading. Seeing requires not only precise optics to focus images on the retina, but also the concerted action of millions of nerve cells in the brain. This intricate circuitry infers the likely causes of incoming patterns of light and transforms that information into feelings, thoughts, and actions. In this course we will study how light evokes electrical activity in a hierarchy of specialized neural networks that accomplish many unique aspects of seeing. Students will have the opportunity to focus their study on particular aspects, such as color, motion, object recognition, learning, attention, awareness, and how sight can be lost and recovered. Throughout the course we will discuss principles of neural information coding (e.g., receptive field tuning, adaptation, normalization, etc.) that are relevant to other areas of neuroscience, as well as medicine, engineering, art and design

Fall 2022: NSBV BC3381

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBV 3381</td>
<td>001/00615</td>
<td>T 2:10pm - 4:00pm</td>
<td>Alex White</td>
<td>4.00</td>
<td>0/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MUSI GU4325 Introduction to Cognitive Musicology. 3 points.
This course is an introduction to a variety of key topics in the field of cognitive musicology, including human development, evolution, neural processing, embodied knowledge, memory and anticipation, cross-cultural perspectives, and emotions. The course explores recent research on these topics, as well as ways in which this research can be applied to music scholarship.

PHIL UN1001 Introduction to Philosophy. 3 points.
Survey of some of the central problems, key figures, and great works in both traditional and contemporary philosophy. Topics and texts will vary with instructor and semester.

Spring 2022: PHIL UN1001

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 1001</td>
<td>001/00160</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Christopher Prodoehl</td>
<td>3</td>
<td>35/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>203 Diana Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL 1001</td>
<td>002/00161</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Christopher Prodoehl</td>
<td>3</td>
<td>27/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>207 Milbank Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2022: PHIL UN1001

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 1001</td>
<td>001/00406</td>
<td>M W 1:10pm - 2:25pm</td>
<td>Christopher Prodoehl</td>
<td>3</td>
<td>0/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL 1001</td>
<td>002/00407</td>
<td>M W 4:10pm - 5:25pm</td>
<td>Christopher Prodoehl</td>
<td>3</td>
<td>0/20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHIL UN2685 Introduction to Philosophy of Language. 3 points.
This course gives students an introduction to various topics in the Philosophy of Language.

Fall 2022: PHIL UN2685

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 2685</td>
<td>001/00408</td>
<td>T Th 10:10am - 11:25am</td>
<td>Karen Lewis</td>
<td>3</td>
<td>0/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHIL UN3685 PHILOSOPHY OF LANGUAGE. 3.00 points.
This course is a survey of analytic philosophy of language. It addresses central issues about the nature of meaning, including: sense and reference, speech acts, pragmatics, and the relationship between meaning and use, meaning and context, and meaning and truth

Spring 2022: PHIL UN3685

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 3685</td>
<td>001/12019</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Melissa Fusco</td>
<td>3.00</td>
<td>25/80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>214 Pupin Laboratories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL 3685</td>
<td>A31/18575</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Melissa Fusco</td>
<td>3.00</td>
<td>6/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>214 Pupin Laboratories</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHIL UN3840 The Nature and Significance of Animal Minds. 3 points.
Humans have a complicated relationship with other animals. We love them, befriend them and save them. We hunt, farm and eat them. We experiment on and observe them to discover more about them and to discover more about ourselves. For many of us, our pets are amongst the most familiar inhabitants of our world. Yet when we try to imagine what is going on in a dog or cat's mind—let alone that of a crow, octopus or bee—many of us are either stumped about how to go about this, or (the science strongly suggests) getting things radically wrong. Is our thought about and behavior towards animals ethically permissible, or even consistent, Can we reshape our habits of thought about animals to allow for a more rational, richer relationship with the other inhabitants of our planet? In this course, students will reflect on two closely intertwined questions: an ethical question, what sort of relationship ought we to have with animals?; and a metaphysical question, what is the nature of animal minds? Readings will primarily be from philosophy and ethics and the cognitive sciences, with additional readings from literature and biology. There are no prerequisites for this class—it will be helpful but certainly not necessary to have taken previous classes in philosophy (especially ethics and philosophy of mind) or in cognitive science.
PHIL GU4495 Perception. 3 points.
This course addresses the fabulously rich range of issues about the nature of perception, including: perceptual mental representation and its content; computational explanation; justifying beliefs; knowledge and thought about perception; and perception of music. Perception is an interdisciplinary subject par excellence. Readings will be drawn from philosophy and psychology, aesthetics, and artificial intelligence.

Fall 2022: PHIL GU4495

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 4495</td>
<td>Th 2:10pm - 4:00pm Room TBA</td>
<td>Christopher Peacocke</td>
<td>3</td>
<td>0/40</td>
</tr>
</tbody>
</table>

PHIL GU4660 Philosophy of Mind. 3 points.
PSYC BC1001 INTRODUCTION TO PSYCHOLOGY. 3.00 points.
This course is a prerequisite for the Psychology Major, as well as for most other Barnard PSYC courses (be sure to check all course information before enrolling in a course). The following Columbia University courses are considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: UN1001 The Science of Psychology, and UN1021 Science of Psychology: Explorations/Applications.

Spring 2022: PSYC BC1001

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1001</td>
<td>T Th 8:40am - 9:55am Room 202 Altschul Hall</td>
<td>E’mett McCaskill</td>
<td>3.00</td>
<td>134/125</td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>M W 4:10pm - 5:25pm 328 Milbank Hall</td>
<td>Patricia Stokes</td>
<td>3.00</td>
<td>45/50</td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>M W 10:10am - 11:25am 328 Milbank Hall</td>
<td>Robert Remez</td>
<td>3.00</td>
<td>47/55</td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>T Th 4:10pm - 5:25pm 328 Milbank Hall</td>
<td>Danielle Sussan</td>
<td>3.00</td>
<td>62/65</td>
</tr>
</tbody>
</table>

Fall 2022: PSYC BC1001

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1001</td>
<td>T Th 8:40am - 9:55am Room TBA</td>
<td>E’mett McCaskill</td>
<td>3.00</td>
<td>0/95</td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>M W 4:10pm - 5:25pm Room TBA</td>
<td>Patricia Stokes</td>
<td>3.00</td>
<td>0/45</td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>T Th 1:10pm - 2:25pm Room TBA</td>
<td>Danielle Sussan</td>
<td>3.00</td>
<td>0/55</td>
</tr>
<tr>
<td>PSYC 1001</td>
<td>T Th 10:10am - 11:25am Room TBA</td>
<td>Kathleen Taylor</td>
<td>3.00</td>
<td>0/55</td>
</tr>
</tbody>
</table>

PSYC BC2107 PSYCHOLOGY OF LEARNING - LEC. 3.00 points.
Prerequisites: BC1001 Introduction of Psychology or permission of the instructor. Enrollment limited to 72 students.
Prerequisites: PSYC BC1001 Introduction of Psychology or permission of the instructor. Lecture course covering the basic methods, results, and theory in the study of how experience affects behavior. The roles of early exposure, habituation, sensitization, conditioning, imitation, and memory in the acquisition and performance of behavior are studied. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1440 Experimental: Learning and Motivation

Fall 2022: PSYC BC2107

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2107</td>
<td>T Th 10:10am - 11:25am Room TBA</td>
<td>Peter Balsam</td>
<td>3.00</td>
<td>0/105</td>
</tr>
</tbody>
</table>

PSYC BC2129 DEVELOPMENTAL PSYCHOLOGY-LEC. 3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: BC1001 or permission of the instructor. Lecture course covering cognitive, linguistic, perceptual, motor, social, affective, and personality development from infancy to adolescence. Note that this lecture can be taken without its affiliated lab, PSYC BC2128, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2280 Introduction to Developmental Psychology

Spring 2022: PSYC BC2129

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2129</td>
<td>M W 1:10pm - 2:25pm 405 Milbank Hall</td>
<td>Koleen McCaskill</td>
<td>3.00</td>
<td>66/60</td>
</tr>
</tbody>
</table>

Fall 2022: PSYC BC2129

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2129</td>
<td>M W 2:40pm - 3:55pm Room TBA</td>
<td>Koleen McCaskill</td>
<td>3.00</td>
<td>0/70</td>
</tr>
</tbody>
</table>

PSYC BC2163 Human Learning and Memory. 3 points.
Prerequisites: BC1001 and at least one psychology lab course, or permission of the instructor. Enrollment limited to 20 students.
Survey of contemporary theories and empirical research on human memory. Topics will include sensory, short term and long term memory, levels of processing, organization, forgetting, and encoding specificity. Special topics include eyewitness testimony, amnesia, implicit memory, and false memory.

PSYC BC3164 Perception and Language. 4 points.
Prerequisites: BC 1001 and one of the following: BC2106/2107, BC2109/2110, BC2118/2119, BC2128/2129, or permission of the instructor. Enrollment limited to 20 students.
Psychological investigations of spoken communication from a listener’s perspective. Topics include perception and sounds of speech and the apprehension of meaning from words and utterances; the perceptual basis for rhyme and rhythm in speech; and the natural history of vocal communication.

Spring 2022: PSYC BC3164

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 3164</td>
<td>T 6:10pm - 8:00pm Room 409 Barnard Hall</td>
<td>Robert Remez</td>
<td>4</td>
<td>12/15</td>
</tr>
</tbody>
</table>

PSYC BC3369 Language Development. 4 points.
Not offered during 2021-22 academic year.

Prerequisites: BC1001, one Psychology laboratory course, one of the following: PSYC W2240, BC1128/1129, BC1129, or LIN BC V1101, and permission of the instructor. Enrollment limited to 15 students.
Examines the acquisition of a first language by children, from babbling and first words to complex sentence structure and wider communicative competence. Signed and spoken languages, cross-linguistic variation and universalities, language genesis and change, and acquisition by atypical populations will be discussed.
PSYC BC3372 Comparative Cognition. 4 points.
Not offered during 2021-22 academic year.
Prerequisites: BC1001 and one additional course in psychology. Or permission of the instructor. Enrollment limited to 20 students. Review and critical evaluation of current empirical research investigating cognitive processes in both human and non-human species. Topics include comparisons in episodic memory, metacognition, theory of mind, self-awareness, and language abilities.

PSYC BC3381 Theory of Mind and Intentionality. 4 points.
Not offered during 2021-22 academic year.
Prerequisites: BC1001 and one other Psychology course, or permission of the instructor. Enrollment limited to 15 students. Survey and critical analysis of the developmental and neurological research on theory of mind - the attribution of mental states like belief, desire, and knowledge to others in humans and nonhuman animals. Emphasis on the role of intentionality, stages of acquisition, neurological and genetic bases, and deficits in theory of mind.

PSYC BC3384 Social Cognition. 4 points.
Not offered during 2021-22 academic year.
Prerequisites: BC 1001 and one of the following: BC1138/1137 Social Psychology, BC1115/1114 Cognitive Psychology, or permission of the instructor. Survey of research from the field of social cognition, exploring cognitive processes involved in social functioning. Topics include attention, interpretation, evaluation, judgment, attribution, and memory processes. Both controlled and automatic processes will be considered, and the roles of motives, goals, and affective variables will be discussed.

PSYC BC3390 Canine Cognition. 4 points.
Prerequisites: BC1001 and one other Psychology course. Enrollment limited to 15 students. Permission of the instructor is required. An examination of the scientific study of the domestic dog. Emphasis will be on the evolutionary history of the species; the dog's social cognitive skills; canine perceptual and sensory capacities; dog-primate comparative studies; and dog-human interaction.

Spring 2022: PSYC BC3390

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 3390</td>
<td>001/00616</td>
<td>T 10:10am - 12:00pm</td>
<td>Alexandra Horowitz</td>
<td>4</td>
<td>12/15</td>
</tr>
</tbody>
</table>

PSYC BC3394 Metacognition. 4 points.
Prerequisites: BC1001, and one psychology laboratory course; final enrollment determined on the first day of class. Metacognition is one of the latest psychological buzzwords, but what exactly is metacognition? Metacognition enables us to be successful learners, problem solvers, and decision makers, and as often been used synonymously with words such as language, awareness, and consciousness. In this seminar, we will examine various components of metacognition, including its role in learning and memory, and its existence in various non-human populations. In addition, we will explore the fragility of metacognition, including illusions of confidence and harmful control strategies that people use. Readings will include classic and important recent papers in the field, looking at metacognition as a higher-level cognitive process, and as knowledge individuals use to guide behavior.

Fall 2022: PSYC BC3394

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 3394</td>
<td>001/00245</td>
<td>M 10:10am - 12:00pm</td>
<td>Lisa Son</td>
<td>4</td>
<td>0/20</td>
</tr>
</tbody>
</table>

PSYC BC3399 Humans and Machines. 4 points.
Prerequisites: (PSYC BC1001) and Instructor approval. This course will examine the social psychology of Human-Machine interactions, exploring the idea that well-established social psychological processes play critical roles in interactions with non-social objects. The first half of the seminar will examine the social psychology of perception across distinct sensory modalities (shape, motion, voice, touch), whereas the second half will focus on social psychological processes between humans and non-human entities (objects, computers, robots).

PSYC UN2250 Evolution of Cognition. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor's permission.
A systematic review of different forms of cognition as viewed in the context of the theory of evolution. Specific topics include the application of the theory of evolution to behavior, associative learning, biological constraints on learning, methods for studying the cognitive abilities of animals, levels of representation, ecological influences on cognition, and evidence of consciousness in animals.

PSYC UN2280 Developmental Psychology. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Enrollment may be limited. Attendance at the first two classes is mandatory.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the equivalent.
Introduction to the scientific study of human development, with an emphasis on psychobiological processes underlying perceptual, cognitive, and emotional development.

Fall 2022: PSYC UN2280

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2280</td>
<td>001/10038</td>
<td>T Th 4:10pm - 5:25pm</td>
<td>Nim Tottenham</td>
<td>3.00</td>
<td>0/115</td>
</tr>
</tbody>
</table>
PSYC UN3270 Computational Approaches to Human Vision (Seminar). 3 points.
This course will be offered in Fall 2016.
Prerequisites: some background in psychology and/or neurophysiology (e.g., PSYC UN1001, PSYC UN1010, PSYC UN2230, PSYC UN2450, BIOL UN3004 or BIOL UN3005) is desirable. See instructor if you have questions about your background. Some background in mathematics and computer science (e.g., calculus or linear algebra, a programming language) is highly recommended. Study of human vision—both behavioral and physiological data—within a framework of computational and mathematical descriptions. Please contact Prof. Graham by e-mail (nvg1@columbia.edu) if you are interested in this course.

PSYC UN3290 Self: A Cognitive Exploration (Seminar). 4 points.
Not offered during 2021-22 academic year.
Prerequisites: PSYC UN1001 or PSYC UN1010, or the equivalent, plus the instructor’s permission.
What does it mean to have a sense of self? Is it uniquely human? Taking a cognitive perspective, we will discuss these questions as well as self-reflective and self-monitoring abilities, brain structures relevant to self-processing, and disorders of self. We will also consider the self from evolutionary, developmental, neuroscience, and psychopathological perspectives.

PSYC UN3445 The Brain & Memory. 4 points.
Prerequisites: (PSYC UN1010) or Equivalent introductory course in neuroscience or cognitive psychology and the instructor’s permission. This seminar will give a comprehensive overview of episodic memory research: what neuroimaging studies, patient studies, and animal models have taught us about how the brain creates, stores, and retrieves memories.

PSYC UN3450 Evolution of Intelligence, Animal Communication, # Language. 3.00 points.
Prerequisites: PSYC UN1001 or PSYC UN1010, and the instructor’s permission.
Prerequisites: PSYC UN1001, and the instructors permission. A systematic review of the evolution language covering the theory of evolution, conditioning theory, animal communication, ape language experiments, infant cognition, preverbal antecedents of language and contemporary theories of language

PSYC GU4202 Theories of Change in Human Development. 4.00 points.
What are the agents of developmental change in human childhood? How has the scientific community graduated from nature versus nurture, to nature and nurture? This course offers students an in-depth analysis of the fundamental theories in the study of cognitive and social development.

PSYC GU4222 The Cognitive Neuroscience of Aging (Seminar). 4 points.
Prerequisites: courses in introductory psychology and cognitive psychology; and the instructor’s permission. Comprehensive overview of various conceptual and methodologic approaches to studying the cognitive neuroscience of aging. The course will emphasize the importance of combining information from cognitive experimental designs, epidemiologic studies, neuroimaging, and clinical neuropsychological approaches to understand individual differences in both healthy and pathological aging.

PSYC GU4223 Memory and Executive Function Thru the Lifespan. 4 points.
Prerequisites: the instructor’s permission, plus PSYC UN1001 or PSYC UN1010, or the equivalent. Optimal preparation will include some background in experimental design and statistics. Memory and executive processing are critical cognitive functions required for successfully navigating everyday life. In lifespan studies, both exhibit relatively long developmental trajectories followed by stasis and then relative decline in old age. Yet, neither memory nor executive function is a unitary construct. Rather, each is comprised of separable components that may show different developmental trajectories and declines or maintenance at older ages. Moreover, memory is malleable and is a reconstruction of past experience, not an exact reproduction. We will discuss a range of topics related to the development, maintenance and potential decline in memory and executive function from infancy through old age.

Fall 2022: PSYC UN3445
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 3445 001/10052 M 2:10pm - 4:00pm Mariam Aly 4 6/12

405 Schermerhorn Hall

Fall 2022: PSYC UN3450
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 3450 001/11058 Th 2:10pm - 4:00pm Herbert Terrace 3.00 12/12

405 Schermerhorn Hall

Fall 2022: PSYC UN3450
Course Number Section/Call Number Times/Location Instructor Points Enrollment
PSYC 3450 001/10053 T 2:10pm - 4:00pm Herbert Terrace 3.00 6/12

405 Schermerhorn Hall
PSYC GU4225 CONSCIOUSNESS # ATTENTION. 4.00 points.
Prerequisites: the instructor's permission; some basic knowledge of cognitive science and neuroanatomy is desirable, but not necessary. Modern theories attempt to characterize the human mind in terms of information processing. But machines that process information do not seem to feel anything; a computer may for instance receive inputs from a video camera, yet it would be hard to imagine that it sees or experiences the vividness of colors like we do. Nobody has yet provided a convincing theory as to how to explain the subjective nature of our mental lives in objective physical terms. This is called the problem of consciousness, and is generally considered to be one of the last unsolved puzzles in science. Philosophers even debate whether there could be a solution to this problem at all. Students in this course may be recruited for participation in a voluntary research study. Students who choose not to participate in the study will complete the same course requirements as those who do, and an individual's choice will not affect their grade or status as a student in the course.

Spring 2022: PSYC GU4225

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4225</td>
<td>001/11050</td>
<td>T 12:10pm - 2:00pm</td>
<td>Alfredo Spagna</td>
<td>4.00</td>
<td>12/12</td>
</tr>
</tbody>
</table>

PSYC GU4229 Attention and Perception. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (PSYC UN1010) or Equivalent introductory course in neuroscience or cognitive psychology

This seminar aims to provide an in-depth overview of neuroscientific knowledge regarding two critical cognitive functions: attention and perception. For each topic, results from behavioral studies are combined with those from recent neurocognitive approaches – primarily neuropsychological and functional brain imaging studies – that reveal the underlying neural networks and brain mechanisms.

PSYC GU4239 Cognitive neuroscience of narrative and film. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (PSYC UN1010) or Equivalent introductory course in neuroscience or cognitive psychology

This seminar will provide a broad survey of how narrative stories, films, and performances have been used as tools to study cognition in psychology and neuroscience.

Fall 2022: PSYC GU4239

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4239</td>
<td>001/10050</td>
<td>M 10:10am - 12:00pm</td>
<td>Christopher Baldassano</td>
<td>3</td>
<td>6/12</td>
</tr>
</tbody>
</table>

PSYC GU4242 Evolution of Language (Seminar). 3 points.
Not offered during 2021-22 academic year.

Prerequisites: PSYC UN1001 or

This seminar will consider the evolution of language at the levels of the word and grammar, in each instance, phylogenetically and ontogenetically. Since humans are the only species that use language, attention will be paid to how language differs from animal communication.

Spring 2022: PSYC GU4242

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4242</td>
<td>001/11054</td>
<td>T 2:10pm - 4:00pm</td>
<td>Herbert Terrace</td>
<td>3</td>
<td>12/12</td>
</tr>
</tbody>
</table>

PSYC GU4244 Language and Mind. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: PSYC UN1001 and Preferably, an additional course in psychology, focusing on cognition, development, or research methods. Instructor permission required.

This seminar explores the relationship between language and thought by investigating how language is mentally represented and processed; how various aspects of language interact with each other; and how language interacts with other aspects of cognition including perception, concepts, world knowledge, and memory. Students will examine how empirical data at the linguistic, psychological, and neuroscientific levels can bear on some of the biggest questions in the philosophy of mind and language and in psychology.

PSYC GU4270 COGNITIVE PROCESSES. 3.00 points.

Prerequisites: For undergraduates: one course in cognitive psychology or cognitive neuroscience, or the equivalent, and the instructor's permission.

This seminar will examine evidence from cognitive psychology, cognitive neuroscience, or the equivalent, and the instructors permission. Metacognition and control processes in human cognition. Basic issues include the cognitive mechanisms that enable people to monitor what they know and predict what they will know, the errors and biases involved in self-monitoring, and the implications of metacognitive ability for peoples self-determined learning, behavior, and their understanding of self.

Spring 2022: PSYC GU4270

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4270</td>
<td>001/11071</td>
<td>T 12:10pm - 2:00pm</td>
<td>Janet Metcalfe</td>
<td>3.00</td>
<td>11/12</td>
</tr>
</tbody>
</table>

PSYC GU4280 Core Knowledge (Seminar). 4 points.

Prerequisites: For undergraduates: courses in introductory psychology, cognitive or developmental psychology, and the instructor's permission.

Core Knowledge explores the origins and development of knowledge in infants and children, with an additional emphasis on evolutionary cognition. In this course, we will examine evidence from cognitive psychology, developmental psychology, comparative psychology, neuroscience, and linguistics to look at the child's conception of objects, number, space, language, agency, morality and the social world. We will look at which aspects of knowledge are uniquely human, which are shared with other animals, and how this knowledge changes as children develop.

PSYC GU4281 The Psychology of Curiosity. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: PSYC UN1001 or equivalent introductory psychology course.

What is curiosity and how do we study it? How does curiosity facilitate learning? This course will explore the various conceptual and methodological approaches to studying curiosity and curiosity-driven learning, including animal and human studies of brain and behavior.
PSYC GU4287 Decision Architecture. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (PSYC UN2235) or an equivalent course on judgment and decision making AND the instructor’s permission
This course reviews current research in the domain of decision architecture: the application of research in cognitive and social psychology to real-world situations with the aim of influencing behavior. This seminar will discuss recent and classic studies, both of decision theory and of applied decision research, to explore the effectiveness—as well as the limitations—of a selection of these behavioral “nudges.”

Spring 2022: PSYC GU4287

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4287</td>
<td>001/11047</td>
<td>W 10:10am - 12:00pm 405 Schermerhorn Hall</td>
<td>Katherine Fox-Glassman</td>
<td>4</td>
<td>12/12</td>
</tr>
</tbody>
</table>

PSYC GU4289 THE GAMES PEOPLE PLAY: PSYCH OF STRAT DEC. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (PSYC UN2235) or equivalent course on judgment and decision-making
An introduction to strategic decision-making, also known as behavioral game theory. This course examines the psychology underlying situations in which outcomes are determined by choices made by multiple decision makers. The prime objective will be to examine the use of experimental games to test psychological theories.

PSYC GU4430 Learning and the Brain (Seminar). 4 points.
CC/GS: Partial Fulfillment of Science Requirement

What are the neural mechanisms that support learning, memory, and choices? We will review current theories in the cognitive neuroscience of human learning, discuss how learning and decision making interact, and consider the strengths and weaknesses of two influential methods in the study of human brain and behavior--functional imaging and patient studies.

PSYC GU4435 Non-Mnemonic Functions of Memory Systems. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (PSYC UN1010) or equivalent introductory course in neuroscience or cognitive psychology, and the instructor’s permission.
The past decade has produced an extraordinary amount of evidence that challenges the classic view of a “medial temporal lobe memory system”, namely, the idea that the medial temporal lobe plays a necessary role in long-term memory but not other cognitive functions. This course will introduce these challenges to the traditional perspective by exploring functions of the so-called memory system in domains outside of long-term memory.

Fall 2022: PSYC GU4435

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4435</td>
<td>001/10055</td>
<td>F 2:10pm - 4:00pm 405 Schermerhorn Hall</td>
<td>Mariam Aly</td>
<td>4</td>
<td>0/12</td>
</tr>
</tbody>
</table>