Cognitive Science is the cross-disciplinary study of how the mind works, with a focus on perception, reasoning, memory, attention, language, decision-making, motor control, and problem solving. Cognitive scientists often compare minds to computers. In particular, they describe mental processes as computational operations on internal representations. For instance, perception is seen as a representation of the external world that results from sensory stimulation; learning is analyzed as the addition of new representations through interactions with the environment; reasoning is treated as the addition of new representations through operations on existing representations.

Cognitive Science is an interdisciplinary field: it draws on tools and ideas from psychology, neuroscience, linguistics, economics, computer science, and philosophy, with affiliated faculty in each of these disciplines. Psychologists study the computational operations that we use to solve specific tasks; neuroscientists study the implementation of those operations in the brain; linguists study the representations involved in communication; economists study the representations involved in decisions involving uncertainty and reward; computer scientists consider how the processes involved in human cognition fit into a more general theory of computations and a larger space of tasks; and philosophers ask fundamental questions about the nature of representation and computation.

Learning Objectives

Cognitive Science majors will gain fluency in computational methods; a capacity for rigorous and careful thought; a broad understanding of the affiliated disciplines; and a deep understanding of cognition.

Barnard Director: Professor John Morrison (Philosophy, Barnard)
Columbia Director: Professor Mariusz S. Kozak (Music, Columbia)

Steering Committee:
Dima Amso (Psychology, Columbia)
Mariusz S. Kozak (Music, Columbia)
John McWhorter (Linguistics, Columbia)
John Morrison (Philosophy, Barnard)
Christopher A.B. Peacocke (Philosophy, Columbia)
Ann Senghas (Psychology, Barnard)
Lisa Son (Psychology, Barnard)
Michael Woodford (Economics, Columbia)
Rebecca Wright (Computer Science, Barnard)

Affiliated Faculty:
Mariam Aly (Psychology, Columbia)
Christopher Baldassano (Psychology, Columbia)
Peter Balsam (Neuroscience & Behavior, Psychology, Barnard)
Akeel Bilgrami (Philosophy, Columbia)
BJ Casey (Neuroscience & Behavior, Barnard)

Major Requirements:

1. Required courses (7 classes)

 - COGS UN1001 Introduction to Cognitive Science
 - Introduction to Cognitive Science

 - One cognition-focused course in each of four areas: psychology, neuroscience, philosophy, and linguistics.
 - Courses must be chosen from the approved list in each area; please see the approved lists below.

 - Two courses in a fifth area: mathematical and computational methods.
 - Courses must be chosen from the approved list and not be redundant; please see the approved lists below.

2. Area of Specialization and Electives (four classes)

 Students must choose an area of specialization and four electives to build expertise in that area.

 - Sample specializations: aesthetics, cognitive development, cognitive linguistics, cognitive neuroscience, cognitive psychology, consciousness, decision science, human-computer interaction, intelligence, learning, memory, natural language processing,
neuroeconomics, perception, and social cognition. Please see below for lists of possible electives for these specializations.

- The choice of specialization is flexible; the sample specializations are just examples. This is an opportunity for students to be creative; a student who has ideas about a new specialization that they would like to pursue may do so with the approval of the program director.

- There must be at least one faculty member affiliated with the program who has expertise in the student’s chosen area so that they can ensure that the student’s electives will provide sufficient preparation for the senior project.

3. Senior Capstone

Students may fulfill the Senior Capstone requirement in two ways: with a year-long senior project, or by taking two additional advanced courses.

- The senior project is a year-long project in a student’s area of specialization under the supervision of a chosen advisor. The project could be an experiment or a paper. Please note that a student who wishes to do a senior project is responsible for finding an advisor for the project, though the program director may be able to suggest faculty members whom the student might contact.

- Students who do senior projects must register for both COGS UN3903 Senior Project (3 points) and COGS UN3901 Senior Project Seminar (1 point) in the fall and COGS UN3904 Senior Project (3 points) and COGS UN3902 Senior Project Seminar (1 point) in the spring (8 points total).

- The Senior Project Seminar is an opportunity for students to present their projects to each other.

- While a year-long project is recommended, students may also satisfy the senior capstone requirement by taking two advanced courses, at least one of which must include a significant paper or project. The courses must be chosen in consultation with the program director and must be related to the student’s area of specialization. Both courses should be at the 3000-level or above.

The area of specialization, electives, and capstone must form a coherent course of study and must be approved by the program director.

Please note:

- Courses taken pass/fail may not count towards Cognitive Science major requirements.

- While some courses listed under the sample specializations are also on the lists of courses approved to count for area requirements, no course may be double counted: if a student is counting a course for an area requirement, then that course may not be counted as an elective.

Courses approved to count in each area:

Psychology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC BC2107</td>
<td>PSYCHOLOGY OF LEARNING - LEC</td>
</tr>
<tr>
<td>PSYC BC2110</td>
<td>PERCEPTION-LECTURE</td>
</tr>
<tr>
<td>PSYC BC2115</td>
<td>COGNITIVE PSYCHOLOGY - LEC</td>
</tr>
<tr>
<td>PSYC UN2210</td>
<td>COGNITION: BASIC PROCESSES</td>
</tr>
<tr>
<td>PSYC UN2220</td>
<td>COGNITION: MEMORY AND STRESS</td>
</tr>
<tr>
<td>PSYC UN2270</td>
<td>Perception and Cognition in Social Life</td>
</tr>
</tbody>
</table>

Neuroscience

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBV BC1001</td>
<td>INTRODUCTION TO NEUROSCIENCE</td>
</tr>
<tr>
<td>NSBV BC2008</td>
<td>ADAPTIVE OR ARRESTED DEVELOPMENT OF THE ADOLESCENT BRAIN</td>
</tr>
<tr>
<td>PSYC UN2430</td>
<td>COGNITIVE NEUROSCIENCE</td>
</tr>
<tr>
<td>PSYC UN2435</td>
<td>Social Neuroscience</td>
</tr>
<tr>
<td>PSYC UN2450</td>
<td>BEHAVIORAL NEUROSCIENCE</td>
</tr>
<tr>
<td>PSYC UN2481</td>
<td>Developmental Cognitive Neuroscience</td>
</tr>
<tr>
<td>NSBV BC3381</td>
<td>Visual Neuroscience: From the Eyeball to the Mind’s Eye</td>
</tr>
</tbody>
</table>

Please note that PSYC UN2430 Cognitive Neuroscience may be used to fulfill either the Neuroscience requirement or the Psychology requirement, but not both.

Philosophy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL UN2655</td>
<td>COGNITIVE SCIENCE AND PHILOSOPHY</td>
</tr>
<tr>
<td>PHIL UN3252</td>
<td>Philosophy of Language and Mind</td>
</tr>
<tr>
<td>PHIL UN3651</td>
<td></td>
</tr>
<tr>
<td>PHIL UN3655</td>
<td>TOPICS IN COGNITIVE SCIENCE AND PHILOSOPHY</td>
</tr>
<tr>
<td>PHIL UN3912</td>
<td>SEMINAR</td>
</tr>
</tbody>
</table>

Please note that only the “Perception” section of PHIL UN3912 counts.

Linguistics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LING UN3101</td>
<td>INTRODUCTION TO LINGUISTICS</td>
</tr>
</tbody>
</table>

Mathematical and Computational Methods

Logic and Decision Theory:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON GU4850</td>
<td>COGNITIVE MECH # ECON BEHAVIOR</td>
</tr>
<tr>
<td>PHIL UN1401</td>
<td>INTRODUCTION TO LOGIC</td>
</tr>
<tr>
<td>PHIL UN3411</td>
<td>SYMBOLIC LOGIC</td>
</tr>
<tr>
<td>PHIL GU4561</td>
<td>PROBABILITY # DECISION THEORY</td>
</tr>
<tr>
<td>PSYC UN2235</td>
<td>THINKING AND DECISION MAKING</td>
</tr>
</tbody>
</table>

Statistics:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON BC1007</td>
<td>MATH METHODS FOR ECONOMICS</td>
</tr>
<tr>
<td>ECON BC2411</td>
<td>STATISTICS FOR ECONOMICS</td>
</tr>
<tr>
<td>PSYC BC1101</td>
<td>STATISTICS LECTURE AND RECITATION</td>
</tr>
<tr>
<td>PSYC UN1610</td>
<td>STATISTICS-BEHAVIORL SCIENTISTS</td>
</tr>
<tr>
<td>STAT UN1001</td>
<td>INTRO TO STATISTICAL REASONING</td>
</tr>
<tr>
<td>STAT UN1101</td>
<td>INTRODUCTION TO STATISTICS</td>
</tr>
<tr>
<td>STAT UN1201</td>
<td>CALC-BASED INTRO TO STATISTICS</td>
</tr>
</tbody>
</table>
Sample Specializations

Please note that while a few of the courses listed below are on the lists of courses approved to count for area requirements, no course may be double counted: if a student uses a course to fulfill an area requirement then that course may not be counted as an elective.

Aesthetics
4 of the following:
- MUSI UN2320 Introduction to Music Cognition
- SOAR AV4000 SOUND:Music, Math, and Mind
- PHIL GU4055
- PSYC GU4239 COG NEURO NARRATIVE FILM
- MUSI GU4325 Topics in Music Cognition
- CLEN GU4728 Literature in the Age of AI

Cognitive Development
4 of the following:
- PSYC BC2115 COGNITIVE PSYCHOLOGY - LEC
- PSYC BC2129 DEVELOPMENTAL PSYCHOLOGY-LEC
- PSYC UN2481 Developmental Cognitive Neuroscience
- PSYC BC3369 Language Development
- PSYC GU4202 Theories of Change in Human Development
- PSYC GU4222 The Cognitive Neuroscience of Aging (Seminar)
- PSYC GU4498 BEHAVIORAL EPIGENETICS

Cognitive Linguistics
4 of the following:
- ANTH UN1009 INTRO TO LANGUAGE # CULTURE
- PSYC BC3164 PERCEPTION AND LANGUAGE
- PHIL UN3252 Philosophy of Language and Mind
- PSYC BC3369 Language Development

Cognitive Neuroscienec
4 of the following:
- PSYC UN2481 Developmental Cognitive Neuroscience
- NSBV BC3405 NEUROSCIENCE OF TRAUMA
- PSYC GU4225 CONSCIOUSNESS # ATTENTION
- PSYC GU4239 COG NEURO NARRATIVE FILM
- PSYC GU4415 METHODS/ISSUES-COGNITIV NEU
- PSYC GU4498 BEHAVIORAL EPIGENETICS

Cognitive Psychology
4 of the following:
- PSYC BC2115 COGNITIVE PSYCHOLOGY - LEC
- PSYC BC2129 DEVELOPMENTAL PSYCHOLOGY-LEC
- PSYC UN2220 COGNITION: MEMORY AND STRESS
- PSYC BC3164 PERCEPTION AND LANGUAGE
- PSYC BC3394 METACOGNITION
- PSYC GU4225 CONSCIOUSNESS # ATTENTION
- PSYC GU4672 MORAL PSYCHOLOGY

Consciousness
4 of the following:
- PSYC UN2210 COGNITION: BASIC PROCESSES
- PHIL UN3651
- PSYC GU4225 CONSCIOUSNESS # ATTENTION
- PSYC GU4244 LANGUAGE AND MIND

Decision Science
4 of the following:
- PSYC BC2178 FORENSIC PSYCHOLOGY
- PSYC UN2235 THINKING AND DECISION MAKING
- PSYC UN2620 ABNORMAL BEHAVIOR
- PSYC GU4202 Theories of Change in Human Development
- PSYC GU4241 Mentalizing: How we read people
- PSYC GU4430 Learning and the Brain (Seminar)
- COGS GU4800 Resource-Constrained Decision Making

Human-Computer Interaction
4 of the following:
Intelligence
4 of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC GU4236</td>
<td>Machine Intelligence</td>
</tr>
<tr>
<td>COMS W4701</td>
<td>ARTIFICIAL INTELLIGENCE</td>
</tr>
<tr>
<td>COMS W4705</td>
<td>NATURAL LANGUAGE PROCESSING</td>
</tr>
<tr>
<td>COMS W4771</td>
<td>MACHINE LEARNING</td>
</tr>
<tr>
<td>PSYC GR6080</td>
<td>Introduction to Neural Networks and Deep Learning</td>
</tr>
</tbody>
</table>

Learning
4 of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC BC2107</td>
<td>PSYCHOLOGY OF LEARNING - LEC</td>
</tr>
<tr>
<td>COMS W4705</td>
<td>NATURAL LANGUAGE PROCESSING</td>
</tr>
<tr>
<td>COMS W4771</td>
<td>MACHINE LEARNING</td>
</tr>
<tr>
<td>PSYC GR6080</td>
<td>Introduction to Neural Networks and Deep Learning</td>
</tr>
</tbody>
</table>

Memory
4 of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC BC2107</td>
<td>PSYCHOLOGY OF LEARNING - LEC</td>
</tr>
<tr>
<td>PSYC UN2200</td>
<td>COGNITION: MEMORY AND STRESS</td>
</tr>
<tr>
<td>PSYC UN3445</td>
<td>THE BRAIN AND MEMORY</td>
</tr>
<tr>
<td>PSYC UN3455</td>
<td>Neurobiology of Working Memory</td>
</tr>
</tbody>
</table>

Natural Language Processing
4 of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LING UN3103</td>
<td>Language, Brain and Mind</td>
</tr>
<tr>
<td>PHIL UN3252</td>
<td>Philosophy of Language and Mind</td>
</tr>
<tr>
<td>PSYC GU4236</td>
<td>Machine Intelligence</td>
</tr>
<tr>
<td>PSYC GU4242</td>
<td>Evolution of Language (seminar)</td>
</tr>
<tr>
<td>COMS W4705</td>
<td>NATURAL LANGUAGE PROCESSING</td>
</tr>
</tbody>
</table>

Neuroeconomics
1. Either.
 - ECON BC3035 INTERMEDIATE MICROECONOMIC THEORY

2. Either.
 - ECON UN3211 INTERMEDIATE MICROECONOMICS
Required for Cognitive Science majors doing senior projects:

COGS UN3901 Senior Project Seminar. 1.00 point.
Discussion of senior research projects during the fall and spring terms that culminate in written and oral senior theses. Each project must be supervised by a cognitive scientist working at Barnard or Columbia

Fall 2024: COGS UN3901

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COGS 3901</td>
<td>001/00225</td>
<td>W 4:10pm - 6:00pm 502 Diana Center</td>
<td>John Morrison</td>
<td>1.00</td>
<td>8/20</td>
</tr>
</tbody>
</table>

COGS UN3902 Senior Project Seminar. 1.00 point.
Discussion of senior research projects during the fall and spring terms that culminate in written and oral senior theses. Each project must be supervised by a cognitive scientist working at Barnard or Columbia

Spring 2024: COGS UN3902

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COGS 3902</td>
<td>001/00021</td>
<td>M 4:10pm - 6:00pm 405 Barnard Hall</td>
<td>John Morrison</td>
<td>1.00</td>
<td>13/13</td>
</tr>
</tbody>
</table>

COGS UN3903 Senior Project. 3.00 points.
Senior Project in Cognitive Science

COGS UN3904 Senior Project. 3.00 points.
Senior Project in Cognitive Science

Spring 2024: COGS UN3904

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COGS 3904</td>
<td>001/00022</td>
<td>John Morrison 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>002/11453</td>
<td>Mariusz Kozak 3.00</td>
<td>2/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>003/11454</td>
<td>Janet Metcalf 3.00</td>
<td>2/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>004/11455</td>
<td>William Foley 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>005/00023</td>
<td>John Glendinning 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>006/00024</td>
<td>Robert Remez 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>007/00025</td>
<td>Luca Iemi 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>008/11456</td>
<td>Christopher Baldassano 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>009/11457</td>
<td>Jon Freeman 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>010/11458</td>
<td>Michael Woodford 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COGS 3904</td>
<td>011/20999</td>
<td>John Wilcox 3.00</td>
<td>1/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Psychology:

PSYC BC2107 PSYCHOLOGY OF LEARNING - LEC. 3.00 points.
Prerequisites: BC1001 Introduction to Psychology or permission of the instructor. Enrollment limited to 72 students.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor. Lecture course covering the basic methods, results, and theory in the study of how experience affects behavior. The roles of early exposure, habituation, sensitization, conditioning, imitation, and memory in the acquisition and performance of behavior are studied. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1440 Experimental Learning and Motivation

Fall 2024: PSYC BC2107

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2107</td>
<td>001/00069</td>
<td>T Th 10:10am - 11:25am 408 Zankel</td>
<td>Ken Light</td>
<td>3.00</td>
<td>85/100</td>
</tr>
</tbody>
</table>

PSYC BC2110 PERCEPTION-LECTURE. 3.00 points.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor. Lecture course covering an introduction to problems, methods, and research in perception. Discussion of psychological studies of seeing, hearing, touching, tasting, and smelling. Note that this lecture can be taken without its affiliated lab, PSYC BC2109, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1480 Perception and Attention; and PSYC UN2230 Perception and Sensory Processes

Fall 2024: PSYC BC2110

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2110</td>
<td>001/00070</td>
<td>M W 10:10am - 11:25am 323 Milbank Hall</td>
<td>Robert Remez</td>
<td>3.00</td>
<td>47/55</td>
</tr>
</tbody>
</table>

PSYC BC2115 COGNITIVE PSYCHOLOGY - LEC. 3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor. Lecture covering selected topics illustrating the methods, findings, and theories of contemporary cognitive psychology. Topics include attention, memory, categorization, perception, and decision making. Special topics include neuropsychology and cognitive neuroscience. Note that this lecture can be taken without its affiliated lab, PSYC BC2114, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University courses are considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2220 Cognition: Memory and Stress; and PSYC UN2210 Cognition: Basic Processes

Spring 2024: PSYC BC2115

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2115</td>
<td>001/00438</td>
<td>M W 10:10am - 11:25am L002 Milstein Center</td>
<td>Lisa Son</td>
<td>3.00</td>
<td>95/100</td>
</tr>
</tbody>
</table>

PSYC UN2210 COGNITION: BASIC PROCESSES. 3.00 points.

Spring 2024: PSYC UN2210

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2210</td>
<td>001/11888</td>
<td>M W 1:10pm - 2:25pm 501 Schermerhorn Hall</td>
<td>Nora Isacoff</td>
<td>3.00</td>
<td>107/110</td>
</tr>
</tbody>
</table>
PSYC UN2220 COGNITION: MEMORY AND STRESS. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Attendance at the first class is mandatory.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor’s permission.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructors permission. Memory, attention, and stress in human cognition
Fall 2024: PSYC UN2220
Course | Section/Call Number | Times/Location | Instructor | Points | Enrollment
--- | --- | --- | --- | --- | ---
PSYC 2220 | 001/10668 | M W 1:10pm - 2:25pm | Janet Metcalfe | 3.00 | 75/75

PSYC UN2270 Perception and Cognition in Social Life. 3.00 points.
This course focuses on perception and cognition in social life. We start by addressing the core social motivations we experience in everyday life (e.g., our desire to feel like we belong to a group). Next, we examine how these motivations shape our basic sensory experiences—for example why we can’t help but anthropomorphize inanimate objects or enjoy holding hands with our partner. We then examine the mental strategies we use to meet our social needs, such as how we figure out other people’s thoughts and feelings, as well as our own. Finally, we wrap up by examining how these motivations, perceptions, and cognitions play out not just within one mind—but also between minds in everyday social interaction. This course will not only teach you the fundamental science behind the social mind. It will also let you see your own social life through a whole new lens.
Spring 2024: PSYC UN2270
Course	Section/Call Number	Times/Location	Instructor	Points	Enrollment
PSYC 2270 | 001/14744 | M W 2:40pm - 3:55pm | Meghan Meyer | 3.00 | 69/85
329 Pupin Laboratories

PSYC UN2430 COGNITIVE NEUROSCIENCE. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: PSYC UN1001 or equivalent introductory course in Psychology
Prerequisites: PSYC UN1001 or equivalent introductory course in Psychology This course provides an in-depth survey of data and models of a wide variety of human cognitive functions. Drawing on behavioral, neuropsychological, and neuroimaging research, the course explores the neural mechanisms underlying complex cognitive processes, such as perception, memory, and decision making. Importantly, the course examines the logic and assumptions that permit us to interpret brain activity in psychological terms.
Fall 2024: PSYC UN2430
Course	Section/Call Number	Times/Location	Instructor	Points	Enrollment
PSYC 2430 | 001/10671 | M W 2:40pm - 3:55pm | Alfredo Spagna | 3.00 | 109/120
Room TBA

PSYC BC3394 METACOGNITION. 4.00 points.
Prerequisites: BC1001, and one psychology laboratory course; final enrollment determined on the first day of class
Metacognition is one of the latest psychological buzzwords, but what exactly is metacognition? Metacognition enables us to be successful learners, problem solvers, and decision makers, and as often been used synonymously with words such as language, awareness, and consciousness. In this seminar, we will examine various components of metacognition, including its role in learning and memory, and its existence in various non-human populations. In addition, we will explore the fragility of metacognition, including illusions of confidence and harmful control strategies that people use. Readings will include classic and important recent papers in the field, looking at metacognition as a higher-level cognitive process, and as knowledge individuals use to guide behavior.
Fall 2024: PSYC BC3394
Course	Section/Call Number	Times/Location	Instructor	Points	Enrollment
PSYC 3394 | 001/00736 | W 10:10am - 12:00pm | Lisa Son | 4.00 | 20/20
119 Milstein Center

Please note that PSYC UN2430 Cognitive Neuroscience may be used to fulfill either the Neuroscience requirement or the Psychology requirement, but not both.

Neuroscience

NSBV BC1001 INTRODUCTION TO NEUROSCIENCE. 3.00 points.
This course is required for all the other courses offered in Neuroscience and Behavior. The course introduces students to the anatomy and physiology of the nervous system. The topics include the biological structure of the nervous system and its different cell types, the basis of the action potential, principles of neurotransmission, neuronal basis of behavior, sleep/wake cycles, and basic aspects of clinical neuroscience
Spring 2024: NSBV BC1001
Course	Section/Call Number	Times/Location	Instructor	Points	Enrollment
NSBV 1001 | 001/00037 | T Th 10:10am - 11:25am | Alex White | 3.00 | 102/100
304 Barnard Hall

Fall 2024: NSBV BC1001
Course	Section/Call Number	Times/Location	Instructor	Points	Enrollment
NSBV 1001 | 001/00057 | T Th 8:40am - 9:55am | BJ Casey | 3.00 | 78/95
304 Barnard Hall

NSBV BC2008 ADAPTIVE OR ARRESTED DEVELOPMENT OF THE ADOLESCENT BRAIN. 3.00 points.
The teen brain has received a lot of media coverage with advances in brain imaging techniques that provide a voyeuristic opportunity for us to look under the hood of the behaving adolescent brain. This course will cover empirical and theoretical accounts of adolescent-specific changes in brain and behavior that relate to the development of self control. These accounts of adolescent brain and behavior will then be discussed in the context of relevant legal, social and health policy issues. Lectures and discussion will address: Under what circumstances self control appears to be diminished in adolescents. How do dynamic changes in neural circuitry help to explain changes in self control across development? When does the capacity for self control fully mature? Are these changes observed in other species? How might these changes be evolutionarily adaptive and when are they maladaptive? How might understanding adolescent brain and behavioral development inform interventions and treatments for maladaptive behavior or inform policy for changing the environment to protect youth?
PSYC UN2430 COGNITIVE NEUROSCIENCE. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: PSYC UN1001 or equivalent introductory course in Psychology
Prerequisites: PSYC UN1001 or equivalent introductory course in Psychology
This course provides an in-depth survey of data and models of a wide variety of human cognitive functions. Drawing on behavioral, neuropsychological, and neuroimaging research, the course explores the neural mechanisms underlying complex cognitive processes, such as perception, memory, and decision making. Importantly, the course examines the logic and assumptions that permit us to interpret brain activity in psychological terms.

Fall 2024: PSYC UN2430
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2430</td>
<td>001/10671</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Alfredo Spagna</td>
<td>3.00</td>
<td>109/120</td>
</tr>
</tbody>
</table>

PSYC UN2435 Social Neuroscience. 3.00 points.

This course will provide a broad overview of the field of social neuroscience. We will consider how social processes are implemented at the neural level, but also how neural mechanisms help give rise to social phenomena and cultural experiences. Many believe that the large expansion of the human brain evolved due to the complex demands of dealing with social others—competing or cooperating with them, deceiving or empathizing with them, understanding or misjudging them. What kind of “social brain” has this evolutionary past left us with? In this course, we will review core principles, theories, and methods guiding social neuroscience, as well as research examining the brain basis of such phenomena as first order logic, you will need to catch up in that area to understand latching on to reality. If you have not already taken an elementary course in logic and assumptions that permit us to interpret brain activity in psychological terms.

Spring 2024: PSYC UN2435
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2435</td>
<td>001/11892</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Jon Freeman</td>
<td>3.00</td>
<td>127/150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>501 Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2024: PSYC UN2435
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2435</td>
<td>001/10672</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Jon Freeman</td>
<td>3.00</td>
<td>103/120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYC UN2450 BEHAVIORAL NEUROSCIENCE. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor's permission.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructors permission. Examines the principles governing neuronal activity, the role of neurotransmitter systems in memory and motivational processes, the presumed brain dysfunctions that give rise to schizophrenia and depression, and philosophical issues regarding the relationship between brain activity and subjective experience.

Spring 2024: PSYC UN2450
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2450</td>
<td>001/11893</td>
<td>M W 10:10am - 11:25am</td>
<td>Sarah DeMoya</td>
<td>3.00</td>
<td>68/65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>141 Uris Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYC UN2481 Developmental Cognitive Neuroscience. 3.00 points.
The course will be an introduction to the science of structural and functional brain development beginning in the prenatal period. We will cover major domains in both cognitive and social development. This is a flipped course, where students will watch lectures online (three 55 minute lectures each week) and participate in classroom discussions and exercises (1 hour 50 minutes twice a week) with the Professor and each other when in person.

Spring 2024: PSYC UN2481
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2481</td>
<td>001/11895</td>
<td>T Th 4:10pm - 5:25pm</td>
<td>Dima Amso</td>
<td>3.00</td>
<td>58/60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>602 Hamilton Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSBV BC3831 Visual Neuroscience: From the Eyeball to the Mind's Eye. 4.00 points.

By absorbing electromagnetic radiation through their eyes, people are able to catch frisbees, recognize faces, and judge the beauty of art. For most of us, seeing feels effortless. That feeling is misleading. Seeing requires not only precise optics to focus images on the retina, but also the concerted action of millions of nerve cells in the brain. This intricate circuitry infers the likely causes of incoming patterns of light and transforms that information into feelings, thoughts, and actions. In this course we will study how light evokes electrical activity in a hierarchy of specialized neural networks that accomplish many unique aspects of seeing. Students will have the opportunity to focus their study on particular aspects, such as color, motion, object recognition, learning, attention, awareness, and how sight can be lost and recovered. Throughout the course we will discuss principles of neural information coding (e.g., receptive field tuning, adaptation, normalization, etc.) that are relevant to other areas of neuroscience, as well as medicine, engineering, art and design.

Please note that PSYC UN2430 Cognitive Neuroscience may be used to fulfill either the Neuroscience requirement or the Psychology requirement, but not both.

Philosophy:

PHIL UN2655 COGNITIVE SCIENCE AND PHILOSOPHY. 3.00 points.

This course will survey a number of topics at the intersection of cognitive science and philosophy. Potential topics include free will, consciousness, embodied cognition, artificial intelligence, neural networks, and the language of thought.

Spring 2024: PHIL UN2655
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 2655</td>
<td>001/18289</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Juliette Vazard</td>
<td>3.00</td>
<td>35/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>331 Uris Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHIL UN3252 Philosophy of Language and Mind. 3 points.

This course will provide an introduction to meaning, reference, understanding, and content in language, thought, and perception. A central concern will be the question of the relation of meaning to truth-conditions, and what is involved in language and thought successfully latching on to reality. If you have not already taken an elementary course in first order logic, you will need to catch up in that area to understand some crucial parts of the course. All the same, the primary concerns of the course will be philosophical, rather than technical.
PHIL UN3655 TOPICS IN COGNITIVE SCIENCE AND PHILOSOPHY. 3.00 points.
This course will focus on one topic at the intersection of cognitive science and philosophy. Potential topics include free will, consciousness, modularity, mental representation, probabilistic inference, the language of thought, and the computational theory of mind

PHIL UN3912 SEMINAR. 3.00 points.
Required of senior majors, but also open to junior majors, and junior and senior concentrators who have taken at least four philosophy courses. This exploration will typically involve writing a substantial research paper. Capped at 20 students with preference to philosophy majors.

LING UN3101 INTRODUCTION TO LINGUISTICS. 3.00 points.
An introduction to the study of language from a scientific perspective. The course is divided into three units: language as a system (sounds, morphology, syntax, and semantics), language in context (space, time, and community), and language of the individual (psycholinguistics, errors, aphasia, neurolinguistics, and language acquisition). Workload: lecture, weekly homework, and final examination.

PHIL UN1401 INTRODUCTION TO LOGIC. 3.00 points.
Explicating criteria for recognizing valid and fallacious arguments, together with various methods for schematizing discourse for the purpose of logical analysis. Illustrative material taken from science and everyday life.

PHIL UN3411 SYMBOLIC LOGIC. 4.00 points.
Corequisites: PHILV3413 Required Discussion Section (0 points). An advanced introduction to classical sentential and predicate logic. No previous acquaintance with logic is required; nonetheless a willingness to master technicalities and to work at a certain level of abstraction is desirable.

Mathematical and Computational Methods
Logic and Decision Theory

ECON GU4850 COGNITIVE MECH # ECON BEHAVIOR. 4.00 points.
Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1201
Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1201
Standard economic theory seeks to explain human behavior (especially in economic settings, such as markets) in terms of rational choice, which means that the choices that are made can be predicted on the basis of what would best serve some coherent objective, under an objectively correct understanding of the predictable consequences of alternative actions. Observed behavior often seems difficult to reconcile with a strong form of this theory, even if incentives clearly have some influence on behavior, and the course will discuss empirical evidence (both from laboratory experiments and observations in the field) for some well-established anomalies. But beyond simply cataloguing anomalies for the standard theory, the course will consider the extent to which departures from a strong version of rational choice theory can be understood as reflecting cognitive processes that are also evident in other domains such as sensory perception; examples from visual perception will receive particular attention. And in addition to describing what is known about how the underlying mechanisms work (something that is understood in more detail in sensory contexts than in the case of value-based decision making), the course will consider the extent to which such mechanisms — while suboptimal from a normative standpoint that treats perfect knowledge of one’s situation as costless and automatic — might actually represent efficient uses of the limited information and bounded information-processing resources available to actual people (or other organisms). Thus the course will consider both ways in which the realism of economic analysis may be improved by taking into account cognitive processes, and ways in which understanding of cognitive processes might be advanced by considering the economic problem of efficient use of limited (cognitive) resources.

(Please note that only the "Perception" section of the PHIL UN3912 Seminar counts towards the Cognitive Science major; that section is not offered every year.)

Linguistics

(Please note that only the "Perception" section of the PHIL UN3912 Seminar counts towards the Cognitive Science major; that section is not offered every year.)
PHIL GU4561 PROBABILITY # DECISION THEORY. 3.00 points.
Examines interpretations and applications of the calculus of probability including applications as a measure of degree of belief, degree of confirmation, relative frequency, a theoretical property of systems, and other notions of objective probability or chance. Attention to epistemological questions such as Hume's problem of induction, Goodman's problem of projectibility, and the paradox of confirmation

Fall 2024: PHIL GU4561
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 4561</td>
<td>001/12230</td>
<td>Th 12:10pm - 2:00pm</td>
<td>Jessica Collins</td>
<td>3.00</td>
<td>30/30</td>
</tr>
</tbody>
</table>

PSYC UN2235 THINKING AND DECISION MAKING. 3.00 points.
Prerequisites: an introductory course in psychology.
Prerequisites: an introductory course in psychology. Models of judgment and decision making in both certain and uncertain or risky situations, illustrating the interplay of top-down (theory-driven) and bottom-up (data-driven) processes in creating knowledge. Focuses on how individuals do and should make decisions, with some extensions to group decision making and social dilemmas

Spring 2024: PSYC UN2235
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2235</td>
<td>001/11891</td>
<td>Th 11:40am - 12:55pm 501 Schermerhorn Hall</td>
<td>Katherine Fox-Glassman</td>
<td>3.00</td>
<td>126/125</td>
</tr>
</tbody>
</table>

Statistics

ECON BC1007 MATH METHODS FOR ECONOMICS. 4.00 points.
Covers basic mathematical methods required for intermediate theory courses and upper level electives in economics, with a strong emphasis on applications. Topics include simultaneous equations, functions, partial differentiation, optimization of functions of more than one variable, constrained optimization, and financial mathematics. This course satisfies the Calculus requirement for the Barnard Economics major.
NOTE: students who have previously taken Intermediate Micro Theory (ECON BC3035 or the equivalent) are *not* allowed to take Math Methods for Economics

Spring 2024: ECON BC1007
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 1007</td>
<td>001/00737</td>
<td>Th 10:10am - 11:25am 203 Diana Center</td>
<td>Gebreyohannes</td>
<td>4.00</td>
<td>56/60</td>
</tr>
</tbody>
</table>

Fall 2024: ECON BC1007
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 1007</td>
<td>001/00041</td>
<td>Th 10:10am - 11:25am 302 Barnard Hall</td>
<td>Sharon Harrison</td>
<td>4.00</td>
<td>22/25</td>
</tr>
</tbody>
</table>

ECON BC2411 STATISTICS FOR ECONOMICS. 4.00 points.
Elementary computational methods in statistics. Basic techniques in regression analysis of econometric models. One-hour weekly recitation sessions to complement lectures

Fall 2024: ECON BC2411
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2411</td>
<td>001/00480</td>
<td>Th 1:10pm - 2:25pm 152 Horace Mann Hall</td>
<td>Gebreyohannes</td>
<td>4.00</td>
<td>41/50</td>
</tr>
</tbody>
</table>

PSYC BC1101 STATISTICS LECTURE AND RECITATION. 4.00 points.
Prerequisites: BC1001 and instructor permission. Enrollment limited to 20 students per recitation section.
Prerequisite (or co-requisite): PSYC BC1001. Lecture course and associated recitation section introducing students to statistics and its applications to psychological research. The course covers basic theory, conceptual underpinnings, and common statistics. The following Columbia University courses are considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: STAT UN1001 Introduction to Statistical Reasoning; STAT UN1101 Introduction to Statistics; STAT UN1201 Introduction to Statistics

Spring 2024: PSYC BC1101
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1101</td>
<td>001/00435</td>
<td>T Th 10:10am - 11:25am</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>16/20</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>001/00435</td>
<td>Th 12:10pm - 2:00pm 203 Diana Center</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>16/20</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>002/00825</td>
<td>Th 10:10am - 11:25am 203 Diana Center</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>15/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>002/00825</td>
<td>Th 2:10pm - 4:00pm 222 Milbank Hall</td>
<td>Robert Brotherton</td>
<td>4.00</td>
<td>15/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>003/00436</td>
<td>M W 10:10am - 11:25am 328 Milbank Hall</td>
<td>Katherine Thorson</td>
<td>4.00</td>
<td>17/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>003/00436</td>
<td>M 12:10pm - 2:00pm 222 Milbank Hall</td>
<td>Katherine Thorson</td>
<td>4.00</td>
<td>17/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>004/00437</td>
<td>M W 10:10am - 11:25am 328 Milbank Hall</td>
<td>Katherine Thorson</td>
<td>4.00</td>
<td>22/24</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>004/00437</td>
<td>M 2:10pm - 4:00pm 222 Milbank Hall</td>
<td>Katherine Thorson</td>
<td>4.00</td>
<td>22/24</td>
</tr>
</tbody>
</table>

Fall 2024: PSYC BC1101
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1101</td>
<td>001/00710</td>
<td>M W 2:40pm - 3:55pm 263 Macy Hall</td>
<td>Michelle Greene</td>
<td>4.00</td>
<td>19/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>001/00710</td>
<td>M 4:10pm - 6:00pm 222 Milbank Hall</td>
<td>Michelle Greene</td>
<td>4.00</td>
<td>19/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>002/00234</td>
<td>M W 2:40pm - 3:55pm 263 Macy Hall</td>
<td>Michelle Greene</td>
<td>4.00</td>
<td>18/18</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>002/00234</td>
<td>W 4:10pm - 6:00pm 222 Milbank Hall</td>
<td>Michelle Greene</td>
<td>4.00</td>
<td>18/18</td>
</tr>
</tbody>
</table>

PSYC UN1610 STATISTICS-BEHAVIORAL SCIENTISTS. 4.00 points.
Lecture and lab. Priority given to psychology majors. Fee $70.
Prerequisites: PSYC UN1001 or PSYC UN1010 Recommended preparation: one course in behavioral science and knowledge of high school algebra.
Corequisites: PSYC UN1611
Prerequisites: PSYC UN1001 or PSYC UN1010 Recommended preparation: one course in behavioral science and knowledge of high school algebra. Corequisites: PSYC UN1611 Introduction to statistics that concentrates on problems from the behavioral sciences

Spring 2024: PSYC UN1610
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1610</td>
<td>001/11877</td>
<td>T Th 10:10am - 11:25am 200b Schermerhorn Hall</td>
<td>Christopher Baldassano</td>
<td>4.00</td>
<td>42/45</td>
</tr>
</tbody>
</table>

Fall 2024: PSYC UN1610
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1610</td>
<td>001/10692</td>
<td>T Th 11:40am - 12:55pm 200b Schermerhorn Hall</td>
<td>Katherine Fox-Glassman</td>
<td>4.00</td>
<td>39/40</td>
</tr>
</tbody>
</table>
STAT UN1001 INTRO TO STATISTICAL REASONING. 3.00 points.
A friendly introduction to statistical concepts and reasoning with
emphasis on developing statistical intuition rather than on mathematical
rigor. Topics include design of experiments, descriptive statistics,
correlation and regression, probability, chance variability, sampling,
chance models, and tests of significance.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 1001</td>
<td>001/13610</td>
<td>M W 2:40pm - 3:55pm 602 Hamilton Hall</td>
<td>Ronald Neath</td>
<td>3.00</td>
<td>75/86</td>
</tr>
<tr>
<td>STAT 1001</td>
<td>002/13674</td>
<td>M W 10:10am - 11:25am 903 School Of Social Work</td>
<td>Shaw-Hwa Lo, Cindy Meekins</td>
<td>3.00</td>
<td>33/50</td>
</tr>
<tr>
<td>STAT 1001</td>
<td>003/13611</td>
<td>T Th 6:10pm - 7:25pm 602 Hamilton Hall</td>
<td>Victor de la Pena</td>
<td>3.00</td>
<td>66/86</td>
</tr>
</tbody>
</table>

Fall 2024: STAT UN1001

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 1001</td>
<td>001/15145</td>
<td>T Th 10:10am - 11:25am Room TBA</td>
<td>Pratyay Datta</td>
<td>3.00</td>
<td>29/75</td>
</tr>
<tr>
<td>STAT 1001</td>
<td>002/15159</td>
<td>M W 6:10pm - 7:25pm Room TBA</td>
<td>Anthony Donoghue</td>
<td>3.00</td>
<td>52/75</td>
</tr>
<tr>
<td>STAT 1001</td>
<td>003/15146</td>
<td>M W 8:40am - 9:55am Room TBA</td>
<td>Musa Elbulok</td>
<td>3.00</td>
<td>12/75</td>
</tr>
</tbody>
</table>

STAT UN1101 INTRODUCTION TO STATISTICS. 3.00 points.
Prerequisites: intermediate high school algebra. Designed for students
in fields that emphasize quantitative methods. Graphical and numerical
summaries, probability, theory of sampling distributions, linear regression,
analysis of variance, confidence intervals and hypothesis testing.
Quantitative reasoning and data analysis. Practical experience with
statistical software. Illustrations are taken from a variety of fields. Data-
collection/analysis project with emphasis on study designs is part of
the coursework requirement.

Spring 2024: STAT UN1101

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 1101</td>
<td>001/13613</td>
<td>M W 8:40am - 9:55am 517 Hamilton Hall</td>
<td>Alexander Clark</td>
<td>3.00</td>
<td>75/86</td>
</tr>
<tr>
<td>STAT 1101</td>
<td>002/13614</td>
<td>T Th 10:10am - 11:25am 602 Hamilton Hall</td>
<td>David Rios</td>
<td>3.00</td>
<td>70/86</td>
</tr>
<tr>
<td>STAT 1101</td>
<td>003/13615</td>
<td>M W 6:10pm - 7:25pm 602 Hamilton Hall</td>
<td>Banu Baydil</td>
<td>3.00</td>
<td>71/86</td>
</tr>
</tbody>
</table>

Fall 2024: STAT UN1101

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 1101</td>
<td>001/15160</td>
<td>T Th 6:10pm - 7:25pm Room TBA</td>
<td>Dobrin</td>
<td>3.00</td>
<td>18/86</td>
</tr>
<tr>
<td>STAT 1101</td>
<td>002/15161</td>
<td>M W 8:40am - 9:55am Room TBA</td>
<td>Alex Pijyan</td>
<td>3.00</td>
<td>10/200</td>
</tr>
</tbody>
</table>

Spring 2024: STAT UN1201

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 1201</td>
<td>001/13616</td>
<td>M W 10:10am - 11:25am 517 Hamilton Hall</td>
<td>Pratyay Datta</td>
<td>3.00</td>
<td>81/86</td>
</tr>
<tr>
<td>STAT 1201</td>
<td>002/13617</td>
<td>M W 8:40am - 9:55am 602 Hamilton Hall</td>
<td>Joyce Robbins</td>
<td>3.00</td>
<td>79/85</td>
</tr>
<tr>
<td>STAT 1201</td>
<td>003/13618</td>
<td>T Th 10:10am - 11:25am 702 Hamilton Hall</td>
<td>Joyce Robbins</td>
<td>3.00</td>
<td>90/86</td>
</tr>
<tr>
<td>STAT 1201</td>
<td>004/13619</td>
<td>M W 6:10pm - 7:25pm 702 Hamilton Hall</td>
<td>Sheela Kolluri</td>
<td>3.00</td>
<td>70/86</td>
</tr>
</tbody>
</table>

Fall 2024: STAT UN1201

Computer Science

COMS BC1016 Introduction to Computational Thinking and Data Science. 3.00 points.
This course and its co-requisite lab course will introduce students to
the methods and tools used in data science to obtain insights from
data. Students will learn how to analyze data arising from real-world
phenomena while mastering critical concepts and skills in computer
programming and statistical inference. The course will involve hands-
on analysis of real-world datasets, including economic data, document
collections, geographical data, and social networks. The course is ideal
for students looking to increase their digital literacy and expand their use
and understanding of computation and data analysis across disciplines.
No prior programming or college-level math background is required

Spring 2024: COMS BC1016

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 1016</td>
<td>001/00255</td>
<td>T Th 10:10am - 11:25am 903 Altschul Hall</td>
<td>Emily Black</td>
<td>3.00</td>
<td>42/42</td>
</tr>
<tr>
<td>COMS 1016</td>
<td>002/00256</td>
<td>T Th 11:40am - 12:55pm 903 Altschul Hall</td>
<td>Emily Black</td>
<td>3.00</td>
<td>39/42</td>
</tr>
</tbody>
</table>

Fall 2024: COMS BC1016

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 1016</td>
<td>001/00123</td>
<td>T Th 6:10pm - 7:25pm 202 Milbank Hall</td>
<td>Lisa Soros</td>
<td>3.00</td>
<td>24/25</td>
</tr>
<tr>
<td>COMS 1016</td>
<td>002/00124</td>
<td>T Th 2:40pm - 3:55pm 328 Milbank Hall</td>
<td>Lisa Soros</td>
<td>3.00</td>
<td>24/25</td>
</tr>
</tbody>
</table>
COMS W1001 Introduction to Information Science. 3 points.
Lect: 3.

Basic introduction to concepts and skills in Information Sciences: human-computer interfaces, representing information digitally, organizing and searching information on the internet, principles of algorithmic problem solving, introduction to database concepts, and introduction to programming in Python.

COMS W1002 COMPUTING IN CONTEXT. 4.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 or COMS W1002.

COMS W1004 Introduction to Computer Science and Programming in Java. 3 points.
Lect: 3.

A general introduction to computer science for science and engineering students interested in majoring in computer science or engineering. Covers fundamental concepts of computer science, algorithmic problem-solving capabilities, and introductory Java programming skills. Assumes no prior programming background. Columbia University students may receive credit for only one of the following two courses: 1004 or 1005.

COMS W3134 Data Structures in Java. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (COMS W1004) or knowledge of Java.
Data types and structures: arrays, stacks, singly and doubly linked lists, queues, trees, sets, and graphs. Programming techniques for processing such structures: sorting and searching, hashing, garbage collection. Storage management. Rudiments of the analysis of algorithms. Taught in Java. Note: Due to significant overlap, students may receive credit for only one of the following three courses: COMS W3134, COMS W3136, COMS W3137.

COMS W3136 ESSENTIAL DATA STRUCTURES. 4.00 points.
Prerequisites: (COMS W1004) or (COMS W1005) or (COMS W1007) or (ENGI E1006)
A second programming course intended for nonmajors with at least one semester of introductory programming experience. Basic elements of programming in C and C++, array-based data structures, heaps, linked lists, C programming in UNIX environment, object-oriented programming in C++, trees, graphs, generic programming, hash tables. Due to significant overlap, students may only receive credit for either COMS W3134, W3136, or W3137.

COMS W3137 HONORS DATA STRUCTURES # ALGOL. 4.00 points.
Prerequisites: (COMS W1004) or (COMS W1007)
Corequisites: COMS W3203
An honors introduction to data types and structures: arrays, stacks, singly and doubly linked lists, queues, trees, sets, and graphs. Programming techniques for processing such structures: sorting and searching, hashing, garbage collection. Storage management. Design and analysis of algorithms. Taught in Java. Note: Due to significant overlap, students may receive credit for only one of the following three courses: COMS W3134, W3136, or W3137.

ENGI E1006 INTRO TO COMP FOR ENG/APP SCI. 3.00 points.
An interdisciplinary course in computing intended for first year SEAS students. Introduces computational thinking, algorithmic problem solving and Python programming with applications in science and engineering. Assumes no prior programming background.
STEM BC2223 PROGRAMMING BEHAV SCIENCES. 4.00 points.

Specializations

Aesthetics

MUSI UN3230 Introduction to Music Cognition. 3.00 points.
The aim of music cognition is to understand the musical mind. This course is an introduction to a variety of key topics in this field, including human development, evolution, neural processing, embodied knowledge, memory and anticipation, cross-cultural perspectives, and emotions. The course explores recent research on these topics, as well as ways in which this research can be applied to music scholarship. Readings are drawn from fields as diverse as music theory, psychology, biology, anthropology, and neuroscience, and include general works in cognitive science, theoretical work focused on specific musical issues, and reports of empirical research.

SOAR AV4000 SOUND: Music, Math, and Mind. 3.00 points.
This course is a detailed and hands-on (ears-on) exploration of the fundamental physical, physiological, and psychological aspects of sound. Topics covered include sound waves and their physical nature, the propagation and speed of sound in different mediums, geological and other non-living sound sources, animal and insect sound generating strategies, sound perception mechanisms and abilities in different species, the physiology of human hearing and the structure of the human ear, psycho-acoustics and human sound perception, sonic illusions and tricks of the ear. In-class experiments and research make up the majority of the class. Each student will design and lead at least one experiment/demo session. Students also respond to creative weekly prompts about sound topics on courseworks. We also have visits with a number of special guests during the term.

Fall 2024: SOAR AV4000

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOAR-4000</td>
<td>001/11632</td>
<td></td>
<td>David Sulzer</td>
<td>3.00</td>
<td>15/15</td>
</tr>
</tbody>
</table>

PSYC GU4239 COG NEURO NARRATIVE FILM. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (PSYC UN1010 or Equivalent introductory course in neuroscience or cognitive psychology)
Prerequisites: (PSYC UN1010 or Equivalent introductory course in neuroscience or cognitive psychology) This seminar will provide a broad survey of how narrative stories, films, and performances have been used as tools to study cognition in psychology and neuroscience.

MUSI GU4325 Topics in Music Cognition. 3.00 points.
This advanced seminar builds on the Introduction to Music Cognition (MUSIC UN2320) with an in-depth inquiry into selected key topics in the field of Music Cognition. Specific topics vary each year, depending on interest and availability of instructors, and include human development; evolution; communication and music's relation to language; embodied knowledge; first-person awareness; metaphor; ineffability; neuroscience; mental representations; memory and anticipation; cross-cultural studies; emotions; musical aesthetics; artificial intelligence; agency; creativity; and music's relation to other art forms. Each semester the course delves into recent research on 3–4 of these topics, focusing in particular on how this research can be applied to questions of musical knowledge. Advanced readings are drawn from fields as diverse as music theory, psychology, biology, anthropology, philosophy, and neuroscience. They include general works in cognitive science, theoretical work focused on specific musical issues, and reports of empirical research.

Spring 2024: MUSI GU4325

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSI 4325</td>
<td>001/15030</td>
<td>W 4:10pm - 6:00pm</td>
<td>Christopher Peacocke, Mariusz Kozak</td>
<td>3.00</td>
<td>12/15</td>
</tr>
</tbody>
</table>

CLEN GU4728 Literature in the Age of AI. 3.00 points.
In this course we will consider the long history of literature composed with, for, and by machines. Our reading list will start with Ramon Llull, the thirteenth-century combinatorial mystic, and continue with readings from Gottfried Leibniz, Francis Bacon, Jonathan Swift, and Samuel Butler. We will read "Plot Robots" instrumental to the writing of Hollywood scripts and pulp fiction of the 1920s, the avant-garde poetry of Dada and OULIPO, computer-generated love letters written by Alan Turing, and novels created by the first generation of artificial intelligence researchers in the 1950s and 60s. The course will conclude at the present moment, with an exploration of machine learning techniques of the sort used by Siri, Alexa, and other contemporary chat bots.

Spring 2024: CLEN GU4728

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEN 4728</td>
<td>001/12313</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Dennis Tenen</td>
<td>3.00</td>
<td>57/60</td>
</tr>
</tbody>
</table>

Cognitive Development

PSYC BC2115 COGNITIVE PSYCHOLOGY - LEC. 3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor.
Lecture covering selected topics illustrating the methods, findings, and theories of contemporary cognitive psychology. Topics include attention, memory, categorization, perception, and decision making. Special topics include neuropsychology and cognitive neuroscience. Note that this lecture can be taken without its affiliated lab, PSYC BC2114, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University courses are considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2220 Cognition: Memory and Stress; and PSYC UN2210 Cognition: Basic Processes.

Spring 2024: PSYC BC2115

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2115</td>
<td>001/00438</td>
<td>M W 10:10am - 11:25am</td>
<td>Lisa Son</td>
<td>3.00</td>
<td>95/100</td>
</tr>
</tbody>
</table>
PSYC BC2129 DEVELOPMENTAL PSYCHOLOGY-LEC. 3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor. Lecture course covering cognitive, linguistic, perceptual, motor, social, affective, and personality development from infancy to adolescence. Note that this lecture can be taken without its affiliated lab, PSYC BC2128, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2280 Introduction to Developmental Psychology

Spring 2024: PSYC BC2129
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 2129 001/00439 M W 10:10am - 12:00pm Koleen McCrink 3.00 63/68

Fall 2024: PSYC BC2129
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 2129 001/00072 M W 2:40pm - 3:55pm Room TBA Koleen McCrink 3.00 101/100

PSYC UN2481 Developmental Cognitive Neuroscience. 3.00 points.
The course will be an introduction to the science of structural and functional brain development beginning in the prenatal period. We will cover major domains in both cognitive and social development. This is a flipped course, where students will watch lectures online (three 55 minute lectures each week) and participate in classroom discussions and exercises (1 hour 50 minutes twice a week) with the Professor and each other when in person

Spring 2024: PSYC UN2481
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 2481 001/11895 T Th 4:10pm - 5:25pm 602 Hamilton Hall Dima Amso 3.00 58/60

PSYC BC3369 Language Development. 4 points.
Not offered during 2023-2024 academic year.
Prerequisites: BC1001, one Psychology laboratory course, one of the following: PSYC W2240, BC1128/1129, BC1129, or LIN BC V1101, and permission of the instructor. Enrollment limited to 15 students.
Examines the acquisition of a first language by children, from babbling and first words to complex sentence structure and wider communicative competence. Signed and spoken languages, cross-linguistic variation and universals, language genesis and change, and acquisition by atypical populations will be discussed.

Fall 2024: PSYC BC3369
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 3369 001/00767 Th 10:10am - 12:00pm Room TBA 4 1/15

PSYC GU4202 Theories of Change in Human Development. 4.00 points.
What are the agents of developmental change in human childhood?
How has the scientific community graduated from nature versus nurture, to nature and nurture? This course offers students an in-depth analysis of the fundamental theories in the study of cognitive and social development

Fall 2024: PSYC GU4202
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 4202 001/10699 M W 10:10am - 12:00pm Dima Amso 4.00 17/15 405 Schermerhorn Hall

PSYC GU4222 The Cognitive Neuroscience of Aging (Seminar). 4 points.
Prerequisites: courses in introductory psychology and cognitive psychology; and the instructor’s permission.
Comprehensive overview of various conceptual and methodologic approaches to studying the cognitive neuroscience of aging. The course will emphasize the importance of combining information from cognitive experimental design, epidemiologic studies, neuroimaging, and clinical neuropsychological approaches to understand individual differences in both healthy and pathological aging.

PSYC GU4498 BEHAVIORAL EPIGENETICS. 4.00 points.
Prerequisites: basic background in neurobiology (for instance PSYC UN1010, UN2450, UN2460, UN2480, and GU4499) and the instructor’s permission.
Prerequisites: basic background in neurobiology (for instance PSYC UN1010, UN2450, UN2460, UN2480, and GU4499) and the instructors permission. This course will provide an overview of the field of epigenetics, with an emphasis on epigenetic phenomena related to neurodevelopment, behavior and mental disorders. We will explore how epigenetic mechanisms can be mediators of environmental exposures and, as such, contribute to psychopathology throughout the life course.
We will also discuss the implications of behavioral epigenetic research for the development of substantially novel and novel pharmaceutical-based approaches and preventive measures in psychiatric

Fall 2024: PSYC GU4498
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 4498 001/10665 F 2:10pm - 4:00pm 405 Schermerhorn Hall Jennifer Blaze 4.00 3/15

Cognitive Linguistics

ANTH UN1009 INTRO TO LANGUAGE # CULTURE. 3.00 points.
This is an introduction to the study of the production, interpretation, and reproduction of social meanings as expressed through language. In exploring language in relation to culture and society, it focuses on how communication informs and transforms the sociocultural environment

PSYC BC3164 PERCEPTION AND LANGUAGE. 4.00 points.
Prerequisites: BC 1001 and one of the following: BC2106/2107, BC2109/2110, BC2118/2119, BC2128/2129, or permission of the instructor. Enrollment limited to 20 students.
Psychological investigations of spoken communication from a listener’s perspective. Topics include perception and sounds of speech and the apprehension of meaning from words and utterances; the perceptual basis for rhyme and rhythm in speech; and the natural history of vocal communication.
PHIL UN3252 Philosophy of Language and Mind. 3 points.
This course will provide an introduction to meaning, reference, understanding, and content in language, thought, and perception. A central concern will be the question of the relation of meaning to truth-conditions, and what is involved in language and thought successfully latching on to reality. If you have not already taken an elementary course in first order logic, you will need to catch up in that area to understand some crucial parts of the course. All the same, the primary concerns of the course will be philosophical, rather than technical.

PSY BC3369 Language Development. 4 points.
Not offered during 2023-2024 academic year.

Prerequisites: BC1001, one Psychology laboratory course, one of the following: PSYC W2240, BC1128/1129, BC1129, or LIN BC V1101, and permission of the instructor. Enrollment limited to 15 students. Examines the acquisition of a first language by children, from babbling and first words to complex sentence structure and wider communicative competence. Signed and spoken languages, cross-linguistic variation and universalities, language genesis and change, and acquisition by atypical populations will be discussed.

LING GU4244 LANGUAGE AND MIND. 4.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: PSYC UN1001 and Preferably, an additional course in psychology, focusing on cognition, development, or research methods. Instructor permission required.

Prerequisites: PSYC UN1001 and Preferably, an additional course in psychology, focusing on cognition, development, or research methods. Instructor permission required. This seminar explores the relationship between language and thought by investigating how language is mentally represented and processed; how various aspects of language interact with each other; and how language interacts with other aspects of cognition including perception, concepts, world knowledge, and memory. Students will examine how empirical data at the linguistic, psychological, and neuroscientific levels can bear on some of the biggest questions in the philosophy of mind and language and in psychology.

LING GU4376 PHONETICS # PHONOLOGY. 3.00 points.
Prerequisites: LING UN3101

Prerequisites: LING UN3101. An investigation of the sounds of human language, from the perspective of phonetics (articulation and acoustics, including computer-aided acoustic analysis) and phonology (the distribution and function of sounds in individual languages).

Cognitive Neuroscience

PSYC UN2481 Developmental Cognitive Neuroscience. 3.00 points.

The course will be an introduction to the science of structural and functional brain development beginning in the prenatal period. We will cover major domains in both cognitive and social development. This is a flipped course, where students will watch lectures online (three 55 minute lectures each week) and participate in classroom discussions and exercises (1 hour 50 minutes twice a week) with the Professor and each other when in person.

NSBV BC3405 NEUROSCIENCE OF TRAUMA. 4.00 points.

Prerequisites: PSYBC1119

This course provides a comprehensive overview of theoretical models and research relevant to the neurobiology, neuropathology, neuroanatomy and neurodevelopmental processes underlying psychological trauma. Cognitive, emotional and behavioral symptoms associated with post traumatic experience are examined from a neuroscience perspective. Neurotherapeutic treatment interventions are reviewed and critiqued as models of applied clinical neuroscience.
PSYC GU4225 CONSCIOUSNESS # ATTENTION. **4.00 points.**
Prerequisites: the instructor’s permission; some basic knowledge of cognitive science and neuroanatomy is desirable, but not necessary. Modern theories attempt to characterize the human mind in terms of information processing. But machines that process information do not seem to feel anything; a computer may for instance receive inputs from a video camera, yet it would be hard to imagine that it sees or experiences the vividness of colors like we do. Nobody has yet provided a convincing theory as to how to explain the subjective nature of our mental lives in objective physical terms. This is called the problem of consciousness, and is generally considered to be one of the last unsolved puzzles in science. Philosophers even debate whether there could be a solution to this problem at all. Students in this course may be recruited for participation in a voluntary research study. Students who choose not to participate in the study will complete the same course requirements as those who do, and an individual’s choice will not affect their grade or status as a student in the course

Spring 2024: PSYC GU4225

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4225</td>
<td>001/11916</td>
<td>T 12:10pm - 2:00pm</td>
<td>Alfredo</td>
<td>4.00</td>
<td>14/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200c Schermerhorn Hall</td>
<td>Spagna</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYC GU4239 COG NEURO NARRATIVE FILM. **3.00 points.**
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: (PSYC UN1010 or Equivalent introductory course in neuroscience or cognitive psychology)
Prerequisites: (PSYC UN1010 or Equivalent introductory course in neuroscience or cognitive psychology)
This seminar will provide a broad survey of how narrative stories, films, and performances have been used as tools to study cognition in psychology and neuroscience

PSYC GU4415 METHODS/ISSU-COGNITIV NEU. **3 points.**
Please contact the Psychology department for more information.

PSYC GU4498 BEHAVIORAL EPGENETICS. **4.00 points.**
Prerequisites: basic background in neurobiology (for instance PSYC UN1010, UN2450, UN2460, UN2480, and GU4499) and the instructor’s permission.
Prerequisites: basic background in neurobiology (for instance PSYC UN1010, UN2450, UN2460, UN2480, and GU4499) and the instructors permission. This course will provide an overview of the field of epigenetics, with an emphasis on epigenetic phenomena related to neurodevelopment, behavior and mental disorders. We will explore how epigenetic mechanisms can be mediators of environmental exposures and, as such, contribute to psychopathology throughout the life course. We will also discuss the implications of behavioral epigenetic research for the development of substantially novel pharmacotherapeutic approaches and preventive measures in psychiatry

Fall 2024: PSYC GU4498

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4498</td>
<td>001/10665</td>
<td>T 2:10pm - 4:00pm</td>
<td>Jennifer Blaze</td>
<td>4.00</td>
<td>3/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>405 Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cognitive Psychology

PSYC BC2115 COGNITIVE PSYCHOLOGY - LEC. **3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor.
Lecture covering selected topics illustrating the methods, findings, and theories of contemporary cognitive psychology. Topics include attention, memory, categorization, perception, and decision making. Special topics include neuropsychology and cognitive neuroscience. Note that this lecture can be taken without its affiliated lab, PSYC BC2114, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University courses are considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2220 Cognition: Memory and Stress; and PSYC UN2210 Cognition: Basic Processes

Spring 2024: PSYC BC2115

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2115</td>
<td>001/00438</td>
<td>M W 10:10am - 11:25am</td>
<td>Lisa Son</td>
<td>3.00</td>
<td>95/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L002 Milstein Center</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYC BC2129 DEVELOPMENTAL PSYCHOLOGY-LEC. **3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor.
Lecture course covering cognitive, linguistic, perceptual, motor, social, affective, and personality development from infancy to adolescence. Note that this lecture can be taken without its affiliated lab, PSYC BC2128, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2280 Introduction to Developmental Psychology

Spring 2024: PSYC BC2129

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2129</td>
<td>001/00439</td>
<td>M W 2:40pm - 3:55pm</td>
<td>McCrink</td>
<td>3.00</td>
<td>63/68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L103 Diana Center</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2024: PSYC BC2129

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2129</td>
<td>001/00072</td>
<td>M W 2:40pm - 3:55pm</td>
<td>McCrink</td>
<td>3.00</td>
<td>101/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSYC UN2220 COGNITION: MEMORY AND STRESS. **3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Attendance at the first class is mandatory.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor’s permission.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructors permission. Memory, attention, and stress in human cognition
PSYC BC3164 PERCEPTION AND LANGUAGE. 4.00 points.
Prerequisites: BC 1001 and one of the following: BC2106/2107, BC2109/2110, BC2118/2119, BC2128/2129, or permission of the instructor. Enrollment limited to 20 students

Psychological investigations of spoken communication from a listener’s perspective. Topics include perception and sounds of speech and the apprehension of meaning from words and utterances; the perceptual basis for rhyme and rhythm in speech; and the natural history of vocal communication.

PSYC BC3394 METACOGNITION. 4.00 points.
Prerequisites: BC1001, and one psychology laboratory course; final enrollment determined on the first day of class Metacognition is one of the latest psychological buzzwords, but what exactly is metacognition? Metacognition enables us to be successful learners, problem solvers, and decision makers, and as often been used synonymously with words such as language, awareness, and consciousness. In this seminar, we will examine various components of metacognition, including its role in learning and memory, and its existence in various non-human populations. In addition, we will explore the fragility of metacognition, including illusions of confidence and harmful control strategies that people use. Readings will include classic and important recent papers in the field, looking at metacognition as a higher-level cognitive process, and as knowledge individuals use to guide behavior

Fall 2024: PSYC BC3394
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 3394 001/00736 W 10:10am - 12:00pm 119 Milstein Center Lisa Son 4.00 20/20

PSYC GU4225 CONSCIOUSNESS # ATTENTION. 4.00 points.
Prerequisites: the instructor’s permission; some basic knowledge of cognitive science and neuroanatomy is desirable, but not necessary. Modern theories attempt to characterize the human mind in terms of information processing. But machines that process information do not seem to feel anything; a computer may for instance receive inputs from a video camera, yet it would be hard to imagine that it sees or experiences the vividness of colors like we do. Nobody has yet provided a convincing theory as to how to explain the subjective nature of our mental lives in objective physical terms. This is called the problem of consciousness, and is generally considered to be one of the last unsolved puzzles in science. Philosophers even debate whether there could be a solution to this problem at all. Students in this course may be recruited for participation in a voluntary research study. Students who choose not to participate in the study will complete the same course requirements as those who do, and an individual’s choice will not affect their grade or status as a student in the course.

Spring 2024: PSYC GU4225
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 4225 001/11916 T 12:10pm - 2:00pm 205 Schermerhorn Hall Alfredo Spagna 4.00 14/15

PSYC GU4672 MORAL PSYCHOLOGY. 4.00 points.
Prerequisites: Two courses in psychology, including at least one course with a focus on research methods and/or statistics, and permission of the instructor.

Prerequisites: Two courses in psychology, including at least one course with a focus on social and/or developmental psychology, and permission of the instructor. Review of theories and current research on moral cognition and behavior. Topics include definitions of morality, the development of moral cognition, the role that other aspects of human experience (e.g. emotion, intentions) play in moral judgments, and the relationship between moral psychology and other areas of study (e.g. religious cognition, prejudice and stereotyping, the criminal justice system)

Consciousness

PSYC UN2210 COGNITION: BASIC PROCESSES. 3.00 points.
Spring 2024: PSYC UN2210
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 2210 001/11888 M W 1:10pm - 2:25pm Nora Isaacoff 3.00 107/110 501 Schermerhorn Hall

PSYC GU4225 CONSCIOUSNESS # ATTENTION. 4.00 points.
Prerequisites: the instructor’s permission; some basic knowledge of cognitive science and neuroanatomy is desirable, but not necessary. Modern theories attempt to characterize the human mind in terms of information processing. But machines that process information do not seem to feel anything; a computer may for instance receive inputs from a video camera, yet it would be hard to imagine that it sees or experiences the vividness of colors like we do. Nobody has yet provided a convincing theory as to how to explain the subjective nature of our mental lives in objective physical terms. This is called the problem of consciousness, and is generally considered to be one of the last unsolved puzzles in science. Philosophers even debate whether there could be a solution to this problem at all. Students in this course may be recruited for participation in a voluntary research study. Students who choose not to participate in the study will complete the same course requirements as those who do, and an individual’s choice will not affect their grade or status as a student in the course.

Spring 2024: PSYC GU4225
Course Number Section/Call Times/Location Instructor Points Enrollment
PSYC 4225 001/11916 T 12:10pm - 2:00pm Alfredo Spagna 4.00 14/15 205 Schermerhorn Hall
PSYC GU4244 LANGUAGE AND MIND. 4.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: PSYC UN1001 and Preferably, an additional course in psychology, focusing on cognition, development, or research methods. Instructor permission required.

Prerequisites: PSYC UN1001 and Preferably, an additional course in psychology, focusing on cognition, development, or research methods. Instructor permission required. This seminar explores the relationship between language and thought by investigating how language is mentally represented and processed; how various aspects of language interact with each other; and how language interacts with other aspects of cognition including perception, concepts, world knowledge, and memory. Students will examine how empirical data at the linguistic, psychological, and neuroscientific levels can bear on some of the biggest questions in the philosophy of mind and language and in psychology.

PSYC BC2178 FORENSIC PSYCHOLOGY. 3.00 points.
Prerequisites: PSYC BC1001 PSYC BC1001 Introduction to Psychology, or its equivalent. Or permission of the instructor.

Every day there are thousands of individuals interacting with the legal system. Are they mentally competent to stand trial? How can a judge decide if it is in the best interests of a child to live with one, or both (or neither) parent(s)? What is the risk of a violent offender repeating the offense? What kinds of information influence juries? Does mediation work to solve disputes? Forensic psychologists apply their knowledge of psychology specifically in legal matters. This semester will focus on the broad area of forensic psychology, exploring important legal cases relevant to forensic psychology, police psychology, what constitutes expert testimony, how assessments are conducted, and working as a psychologist in the correctional system.

PSYC UN2235 THINKING AND DECISION MAKING. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: an introductory course in psychology. Prerequisites: an introductory course in psychology. Models of judgment and decision making in both certain and uncertain or risky situations, illustrating the interplay of top-down (theory-driven) and bottom-up (data-driven) processes in creating knowledge. Focuses on how individuals do and should make decisions, with some extensions to group decision making and social dilemmas.

PSYC UN2620 ABNORMAL BEHAVIOR. 3.00 points.
Prerequisites: An introductory psychology course. Examines definitions, theories, and treatments of abnormal behavior.

PSYC GU4202 Theories of Change in Human Development. 4.00 points.
What are the agents of developmental change in human childhood? How has the scientific community graduated from nature versus nurture, to nature and nurture? This course offers students an in-depth analysis of the fundamental theories in the study of cognitive and social development.

PSYC GU4241 Mentalizing: How we read people. 4.00 points.
Success in a social world requires understanding other people's thoughts and feelings, a process typically referred to as mentalizing. Yet, other people’s mental states are not directly observable: you cannot see a thought or touch a feeling. Nonetheless, humans are quite proficient at inferring these invisible states of mind. How do we accomplish these mentalizing feats? In this course, we will answer this question from multiple angles, relying heavily on neuroscience and psychology research. The seminar will discuss recent and classic studies that reveal how humans effectively interpret the people around them, as well as when and why they make mistakes.

PSYC GU4430 Learning and the Brain (Seminar). 4 points.
Prerequisites: courses in introductory psychology and/or neuroscience, and the instructor's permission.

What are the neural mechanisms that support learning, memory, and choices? We will review current theories in the cognitive neuroscience of human learning, discuss how learning and decision making interact, and consider the strengths and weaknesses of two influential methods in the study of human brain and behavior—functional imaging and patient studies.
COGS GU4800 Resource-Constrained Decision Making. 4.00 points.
There is a fundamental puzzle about human intelligence: How are we
incredibly smart and stupid at the same time? Humans deal successfully
with the world in a way that no machine can (for now), yet we routinely
behave in ways that seem grossly inconsistent with normative canons
of rational inference and rational choice. This course will seek to resolve
the paradox by exploring the idea that while we make many mistakes,
these mistakes are not haphazard; instead, they reflect a brain that is
highly efficient at inference and decision making within the information,
time, and energy constraints imposed by the finite resources available
to it. In other words, our brains may be “resource-rational” even if they
fail to conform to ideal canons of rationality. We will explore this idea by
considering the structure of errors, biases and illusions in the context of
perceptual judgments, more abstract cognitive judgments (perceptions
of numerical magnitudes or probabilities), and economic decisions; we
will see that there are many analogies between the kinds of characteristic
errors that people make in all of these contexts. A potential explanatory
framework, which can be applied across contexts, considers what
optimal decisions should be like in the case of a decision unit that has
only imprecise information about its situation. Hence statistical modeling
and statistical inference are key elements in the computational models of
human decision making that we wish to discuss.

Spring 2024: COGS GU4800
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COGS 4800 | 001/11459 | W 4:10pm - 6:00pm | Michael Woodford | 4.00 | 17/15

Human-Computer Interaction
PSYC UN3270 COMPUT APPROACHES-HUMAN VISION. 3.00 points.
This course will be offered in Fall 2016.
Prerequisites: some background in psychology and/or neurophysiology (e.g., PSYC UN1001, PSYC UN1010, PSYC UN2230, PSYC UN2450; BIOL UN3004 or BIOL UN3005) is desirable. See instructor if you have questions about your background. Some background in mathematics and computer science (e.g., calculus or linear algebra, a programming language) is highly recommended.
Prerequisites: some background in psychology and/or neurophysiology (e.g. PSYC UN1001, PSYC UN1010, PSYC UN2230, PSYC UN2450; BIOL UN3004 or BIOL UN3005) is desirable. See instructor if you have questions about your background. Some background in mathematics and computer science (e.g. calculus or linear algebra, a programming language) is highly recommended. Study of human vision--both behavioral and physiological data--within a framework of computational and mathematical descriptions. Please contact Prof. Graham by e-mail (nvg1@columbia.edu) if you are interested in this course.

PSYC BC3399 HUMAN AND MACHINES. 4.00 points.
Prerequisites: (PSYC BC1001) and Instructor approval
Prerequisites: (PSYC BC1001) and Instructor approval This course will examine the social psychology of Human-Machine interactions, exploring the idea that well-established social psychological processes play critical roles in interactions with non-social objects. The first half of the seminar will examine the social psychology of perception across distinct sensory modalities (shape, motion, voice, touch), whereas the second half will focus on social psychological processes between humans and non-human entities (objects, computers, robots)

COMS W4170 USER INTERFACE DESIGN. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: (COMS W3134 or COMS W3136 or COMS W3137)
Introduction to the theory and practice of computer user interface design, emphasizing the software design of graphical user interfaces. Topics include basic interaction devices and techniques, human factors, interaction styles, dialogue design, and software infrastructure. Design and programming projects are required

Spring 2024: COMS W4170
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COMS 4170 | 001/12081 | M W 1:10pm - 2:25pm | 417 International Affairs Bldg | Lydia Chilton | 3.00 | 41/398
COMS 4170 | V01/15381 | T Th 1:10pm - 2:25pm | Room TBA | Brian Smith | 3.00 | 0/120

IEME E4200 HUMAN-CENTERED DESIGN AND INNOVATION. 3.00 points.
Open to SEAS graduate and advanced undergraduate students, Business School, and GSAPP. Students from other schools may apply. Fast-paced introduction to human-centered design. Students learn the vocabulary of design methods, understanding of design process. Small group projects to create prototypes. Design of simple product, more complex systems of products and services, and design of business

PSYC GU4236 Machine Intelligence. 4.00 points.
CC/GS: Partial Fulfillment of Science Requirement
This course will survey historical and modern developments in machine intelligence from fields such as psychology, neuroscience, and computer science, and from intellectual movements such as cybernetics, artificial intelligence, neural networks, connectionism, machine learning, and deep learning. The emphasis is on the conceptual understanding of topics. The course does not include, nor require background in, computer programming and statistics. A crucial aspect of the seminar is for students to become informed consumers of applications of artificial intelligence

Spring 2024: PSYC GU4236
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
PSYC 4236 | 001/11918 | T 6:10pm - 8:00pm | 405 Schermerhorn Hall | Trenton Jerde | 4.00 | 18/18

COMS E6178 Human-Computer Interaction. 3.00 points.
Human–computer interaction (HCI) studies (1) what computers are used for, (2) how people interact with computers, and (3) how either of those should change in the future. Topics include ubiquitous computing, mobile health, interaction techniques, social computing, mixed reality, accessibility, and ethics. Activities include readings, presentations, and discussions of research papers. Substantial HCI research project required

Spring 2024: COMS E6178
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COMS 6178 | 001/12109 | F 10:10am - 12:40pm | 545 Seeley W. Mudd Building | Brian Smith | 3.00 | 30/30
Intelligence
PSYC GU4236 Machine Intelligence. 4.00 points.
CC/GS: Partial Fulfillment of Science Requirement

This course will survey historical and modern developments in machine intelligence from fields such as psychology, neuroscience, and computer science, and from intellectual movements such as cybernetics, artificial intelligence, neural networks, connectionism, machine learning, and deep learning. The emphasis is on the conceptual understanding of topics. The course does not include, nor require background in, computer programming and statistics. A crucial aspect of the seminar is for students to become informed consumers of applications of artificial intelligence.

Spring 2024: PSYC GU4236
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
PSYC 4236 | 001/11918 | T 6:10pm - 8:00pm 405 Schermerhorn Hall | Trenton Jerde | 4.00 | 18/18

COMS W4701 ARTIFICIAL INTELLIGENCE. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (COMS W3134 or COMS W3136 or COMS W3137) and any course on probability. Prior knowledge of Python is recommended. Prior knowledge of Python is recommended. Provides a broad understanding of the basic techniques for building intelligent computer systems. Topics include state-space problem representations, problem reduction and and-or graphs, game playing and heuristic search, predicate calculus, and resolution theorem proving. AI systems and languages for knowledge representation, machine learning and concept formation and other topics such as natural language processing may be included as time permits.

Spring 2024: COMS W4701
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COMS 4701 | 001/12088 | M W 2:40pm - 3:55pm 501 Northwest Corner | Tony Dear | 3.00 | 92/164
COMS 4701 | 002/12087 | M W 4:10pm - 5:25pm 501 Northwest Corner | Tony Dear | 3.00 | 102/164
COMS 4701 | V01/17158 | T Th 2:40pm - 3:55pm 405 Schermerhorn Hall | Ansaf Salleh-Aouissi | 3.00 | 157/180

Fall 2024: COMS W4701
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COMS 4701 | 001/11951 | T Th 1:10am - 2:25am 401 Computer Science Bldg | Nakul Verma | 3.00 | 76/110
COMS 4701 | 002/11952 | T Th 11:40am - 12:55pm Room TBA | Ansaf Salleh-Aouissi | 3.00 | 0/180

COMS W4705 NATURAL LANGUAGE PROCESSING. 3.00 points.
Lect: 3.

Prerequisites: (COMS W3134 or COMS W3136 or COMS W3137) or the instructor's permission.

Computational approaches to natural language generation and understanding. Recommended preparation: some previous or concurrent exposure to AI or Machine Learning. Topics include information extraction, summarization, machine translation, dialogue systems, and emotional speech. Particular attention is given to robust techniques that can handle understanding and generation for the large amounts of text on the Web or in other large corpora. Programming exercises in several of these areas.

Spring 2024: COMS W4705
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COMS 4705 | 001/12090 | F 1:10am - 2:25am 451 Computer Science Bldg | Daniel Bauer | 3.00 | 205/272
COMS 4705 | V02/15423 | M W 4:10pm - 5:25pm Room TBA | Zhou Yu | 3.00 | 58/100

COMS W4771 MACHINE LEARNING. 3.00 points.
Lect: 3.

Prerequisites: Any introductory course in linear algebra and any introductory course in statistics are both required. Highly recommended: COMS W4701 or knowledge of Artificial Intelligence.

Topics from generative and discriminative machine learning including least squares methods, support vector machines, kernel methods, neural networks, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models and hidden Markov models. Algorithms implemented in MATLAB.

Spring 2024: COMS W4771
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COMS 4771 | 001/12092 | T Th 1:10am - 2:25am 451 Computer Science Bldg | Nakul Verma | 3.00 | 76/110
COMS 4771 | 002/12093 | T Th 2:40pm - 3:55pm 451 Computer Science Bldg | Nakul Verma | 3.00 | 79/110
COMS 4771 | V01/16720 | M W 1:10am - 2:25am 401 Computer Science Bldg | Daniel Bauer | 3.00 | 98/240

Fall 2024: COMS W4771
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
COMS 4771 | 001/11954 | M W 4:10pm - 5:25pm Room TBA | Zhou Yu | 3.00 | 58/100

PSYC GR6080 Introduction to Neural Networks and Deep Learning. 3.00 points.

This seminar will introduce both the concepts and practical implementation in PyTorch of neural networks and deep learning, with a focus on general principles and examples from vision.
Learning
PSYC BC2107 PSYCHOLOGY OF LEARNING - LEC. 3.00 points.
Prerequisites: BC1001 Introduction of Psychology or permission of the instructor. Enrollment limited to 72 students.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor.
Lecture course covering the basic methods, results, and theory in the study of how experience affects behavior. The roles of early exposure, habituation, sensitization, conditioning, imitation, and memory in the acquisition and performance of behavior are studied. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1440 Experimental: Learning and Motivation

COMS W4705 NATURAL LANGUAGE PROCESSING. 3.00 points.
Lect: 3.
Prerequisites: (COMS W3134 or COMS W3136 or COMS W3137) or the instructor's permission.
Computational approaches to natural language generation and understanding. Recommended preparation: some previous or concurrent exposure to AI or Machine Learning. Topics include information extraction, summarization, machine translation, dialogue systems, and emotional speech. Particular attention is given to robust techniques that can handle understanding and generation for the large amounts of text on the Web or in other large corpora. Programming exercises in several of these areas

PSYC BC2107 PSYCHOLOGY OF LEARNING - LEC. 3.00 points.
COMS W4771 MACHINE LEARNING. 3.00 points.
Lect: 3.
Prerequisites: Any introductory course in linear algebra and any introductory course in statistics are both required. Highly recommended: COMS W4701 or knowledge of Artificial Intelligence.
Topics from generative and discriminative machine learning including least squares methods, support vector machines, kernel methods, neural networks, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models and hidden Markov models. Algorithms implemented in MATLAB

PSYC GR6080 Introduction to Neural Networks and Deep Learning. 3.00 points.
This seminar will introduce both the concepts and practical implementation in PyTorch of neural networks and deep learning, with a focus on general principles and examples from vision

Memory
PSYC BC2107 PSYCHOLOGY OF LEARNING - LEC. 3.00 points.
Prerequisites: BC1001 Introduction of Psychology or permission of the instructor. Enrollment limited to 72 students.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001 Introduction to Cognitive Science or permission of the instructor.
Lecture course covering the basic methods, results, and theory in the study of how experience affects behavior. The roles of early exposure, habituation, sensitization, conditioning, imitation, and memory in the acquisition and performance of behavior are studied. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1440 Experimental: Learning and Motivation

Spring 2024: COMS W4705
<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4705</td>
<td>001/12088</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Daniel Bauer</td>
<td>3.00</td>
<td>110/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>451 Computer Science Bldg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 4705</td>
<td>002/12090</td>
<td>F 10:10am - 12:40pm</td>
<td>Daniel Bauer</td>
<td>3.00</td>
<td>205/272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>301 Pupin Laboratories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 4705</td>
<td>002/15423</td>
<td>T Th 10:10am - 11:25am</td>
<td>Zhou Yu</td>
<td>3.00</td>
<td>58/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2024: COMS W4705
<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4705</td>
<td>001/11953</td>
<td>F 10:10am - 12:40pm</td>
<td>Daniel Bauer</td>
<td>3.00</td>
<td>98/240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 4705</td>
<td>002/11954</td>
<td>M W 4:10pm - 5:25pm</td>
<td>Zhou Yu</td>
<td>3.00</td>
<td>58/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring 2024: COMS W4771
<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4771</td>
<td>001/12092</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>Nakul Verma</td>
<td>3.00</td>
<td>76/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>451 Computer Science Bldg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 4771</td>
<td>002/12093</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Nakul Verma</td>
<td>3.00</td>
<td>79/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>451 Computer Science Bldg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 4771</td>
<td>001/11957</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Nakul Verma</td>
<td>3.00</td>
<td>0/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fall 2024: COMS W4771
<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4771</td>
<td>001/12092</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>Nakul Verma</td>
<td>3.00</td>
<td>76/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>451 Computer Science Bldg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 4771</td>
<td>002/12093</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Nakul Verma</td>
<td>3.00</td>
<td>79/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>451 Computer Science Bldg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMS 4771</td>
<td>001/11957</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Nakul Verma</td>
<td>3.00</td>
<td>0/110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LING UN3103 Language, Brain and Mind. 3.00 points.
The ability to speak distinguishes humans from all other animals, including our closest relatives, the chimpanzees. Why is this so? What makes this possible? This course seeks to answer these questions. We will look at the neurological and psychological foundations of the human faculty of language. How did our brains change to allow language to evolve? Where in our brains are the components of language found? Are our minds specialized for learning language or is it part of our general cognitive abilities to learn? How are words and sentences produced and their meanings recognized? The structure of languages around the world varies greatly; does this have psychological effects for their speakers?

LING UN3103

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LING 3103</td>
<td>001/11718</td>
<td>M W 2:40pm - 3:55pm</td>
<td>William Foley</td>
<td>3.00</td>
<td>45/80</td>
</tr>
</tbody>
</table>

PSYC GU4236 Machine Intelligence. 4.00 points.
This course will survey historical and modern developments in machine intelligence from fields such as psychology, neuroscience, and computer science, and from intellectual movements such as cybernetics, artificial intelligence, neural networks, connectionism, machine learning, and deep learning. The emphasis is on the conceptual understanding of topics. The course does not include, nor require background in, computer programming and statistics. A crucial aspect of the seminar is for students to become informed consumers of applications of artificial intelligence.

PSYC GU4236

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4236</td>
<td>001/11918</td>
<td>T 6:10pm - 8:00pm</td>
<td>Trenton Jerde</td>
<td>4.00</td>
<td>18/18</td>
</tr>
</tbody>
</table>

PSYC GU4242 Evolution of Language (seminar). 3.00 points.
This seminar will consider the evolution of language at the levels of the word and grammar, in each instance, phylogenetically and ontogenetically. Since humans are the only species that use language, attention will be paid to how language differs from animal communication.

PSYC GU4242

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4242</td>
<td>001/11919</td>
<td>T 2:10pm - 4:00pm</td>
<td>Herbert</td>
<td>3.00</td>
<td>10/15</td>
</tr>
</tbody>
</table>

PHIL UN3252 Philosophy of Language and Mind. 3 points.
This course will provide an introduction to meaning, reference, understanding, and content in language, thought, and perception. A central concern will be the question of the relation of meaning to truth-conditions, and what is involved in language and thought successfully latching on to reality. If you have not already taken an elementary course in first order logic, you will need to catch up in that area to understand some crucial parts of the course. All the same, the primary concerns of the course will be philosophical, rather than technical.

PHIL UN3252

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL 3252</td>
<td>001/1010</td>
<td>T 2:10pm - 4:00pm</td>
<td>Herbert</td>
<td>3.00</td>
<td>21</td>
</tr>
</tbody>
</table>
COMS W4705 NATURAL LANGUAGE PROCESSING. 3.00 points.
Lect: 3.
Prerequisites: (COMS W3134 or COMS W3136 or COMS W3137) or the instructor's permission. Computational approaches to natural language generation and understanding. Recommended preparation: some previous or concurrent exposure to AI or Machine Learning. Topics include information extraction, summarization, machine translation, dialogue systems, and emotional speech. Particular attention is given to robust techniques that can handle understanding and generation for the large amounts of text on the Web or in other large corpora. Programming exercises in several of these areas.

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4705</td>
<td>001/12088</td>
<td>M W 2:40pm - 3:55pm 451 Computer Science Bldg</td>
<td>Daniel Bauer</td>
<td>3.00</td>
<td>110/110</td>
</tr>
<tr>
<td>COMS 4705</td>
<td>002/12090</td>
<td>F 10:10am - 12:40pm 301 Pupin Laboratories</td>
<td>Daniel Bauer</td>
<td>3.00</td>
<td>205/272</td>
</tr>
<tr>
<td>COMS 4705</td>
<td>002/15423</td>
<td>M W 4:10pm - 5:25pm Room TBA</td>
<td>Zhou Yu</td>
<td>3.00</td>
<td>18/99</td>
</tr>
</tbody>
</table>

Fall 2024: COMS W4705

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS 4705</td>
<td>001/11953</td>
<td>F 10:10am - 12:40pm Room TBA</td>
<td>Daniel Bauer</td>
<td>3.00</td>
<td>98/240</td>
</tr>
<tr>
<td>COMS 4705</td>
<td>002/11954</td>
<td>M W 4:10pm - 5:25pm Room TBA</td>
<td>Zhou Yu</td>
<td>3.00</td>
<td>58/100</td>
</tr>
</tbody>
</table>

Neuroeconomics

PSYC UN2235 THINKING AND DECISION MAKING. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: an introductory course in psychology. Prerequisites: an introductory course in psychology. Models of judgment and decision making in both certain and uncertain or risky situations, illustrating the interplay of top-down (theory-driven) and bottom-up (data-driven) processes in creating knowledge. Focuses on how individuals do and should make decisions, with some extensions to group decision making and social dilemmas.

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2235</td>
<td>001/11891</td>
<td>T Th 11:40am - 12:55pm 501 Schermerhorn Hall</td>
<td>Katherine Fox Glassman</td>
<td>3.00</td>
<td>126/125</td>
</tr>
</tbody>
</table>

Spring 2024: PSYC UN2235

ECON BC3035 INTERMEDIATE MICROECONOMIC THEORY. 4.00 points.
Prerequisites: An introductory course in microeconomics or a combined macro/micro principles course (ECON BC1003 or ECON W1105, or the equivalent) and one semester of calculus or ECON BC1007, or permission of the instructor. Preferences and demand; production, cost, and supply; behavior of markets in partial equilibrium; resource allocation in general equilibrium; pricing of goods and services under alternative market structures; implications of individual decision-making for labor supply; income distribution, welfare, and public policy. Emphasis on problem solving.

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3035</td>
<td>001/00740</td>
<td>T Th 1:10pm - 2:25pm L104 Diana Center</td>
<td>Lalith</td>
<td>4.00</td>
<td>37/50</td>
</tr>
<tr>
<td>ECON 3035</td>
<td>001/00481</td>
<td>M W 11:40am - 12:55pm 302 Barnard Hall</td>
<td>Elizabeth</td>
<td>4.00</td>
<td>45/45</td>
</tr>
<tr>
<td>ECON 3035</td>
<td>002/00482</td>
<td>T Th 1:10pm - 2:25pm 328 Milbank Hall</td>
<td>Lalith</td>
<td>4.00</td>
<td>42/60</td>
</tr>
</tbody>
</table>

ECON BC3048 Introduction to Behavioral Economics. 3.00 points.
Prerequisites: ECON BC3035
This course reviews the assumption of rationality in microeconomic theory and presents evidence (primarily from experimental psychology and economics) of how judgement and decision-making systematically deviate from what rationality predicts.

ECON UN3211 INTERMEDIATE MICROECONOMICS. 4.00 points.
Prerequisites: ECON UN1105 and MATH UN1101 and (MATH UN1201 or MATH UN1207) The determination of the relative prices of goods and factors of production and the allocation of resources
ECON GU4020 ECON OF UNCERTAINTY # INFORMTN. 3.00 points.
Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1201
Topics include behavior uncertainty, expected utility hypothesis, insurance, portfolio choice, principle agent problems, screening and signaling, and information theories of financial intermediation.

Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1201

PSYC GU4287 DECISION ARCHITECTURE. 4.00 points.
CC/JS: Partial Fulfillment of Science Requirement
Prerequisites: (PSYC UN2235) or an equivalent course on judgment and decision making. AND the instructor’s permission
Prerequisites: (PSYC UN2235) or an equivalent course on judgment and decision making. AND the instructors permission This course reviews current research in the domain of decision architecture: the application of research in cognitive and social psychology to real-world situations with the aim of influencing behavior. This seminar will discuss recent and classic studies, both of decision theory and of applied decision research, to explore the effectiveness—as well as the limitations—of a selection of these behavioral “nudges.”

PSYC GU4289 THE GAMES PEOPLE PLAY: PSYCH OF STRAT DEC. 3.00 points.
CC/JS: Partial Fulfillment of Science Requirement
Prerequisites: (PSYC UN2235) or an equivalent course on judgment and decision-making
Prerequisites: (PSYC UN2235) or equivalent course on judgment and decision-making A seminar course exploring strategic decision making (also known as behavioral game theory). This course examines the psychology underlying situations in which outcomes are determined by choices made by multiple decision makers. The prime objective will be to examine the use of experimental games to test psychological theories.

ECON GU4415 GAME THEORY. 3.00 points.
Prerequisites: ECON UN3211 and ECON UN3213
Prerequisites: ECON UN3211 and ECON UN3213 Introduction to the systematic treatment of game theory and its applications in economic analysis.
ECON GU4850 COGNITIVE MECH # ECON BEHAVIOR. 4.00 points.
Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1201
Prerequisites: ECON UN3211 and ECON UN3213 and STAT UN1201
Standard economic theory seeks to explain human behavior (especially in economic settings, such as markets) in terms of rational choice, which means that the choices that are made can be predicted on the basis of what would best serve some coherent objective, under an objectively correct understanding of the predictable consequences of alternative actions. Observed behavior often seems difficult to reconcile with a strong form of this theory, even if incentives clearly have some influence on behavior; and the course will discuss empirical evidence (both from laboratory experiments and observations in the field) for some well-established anomalies. But beyond simply cataloguing anomalies for the standard theory, the course will consider the extent to which departures from a strong version of rational choice theory can be understood as reflecting cognitive processes that are also evident in other domains such as sensory perception; examples from visual perception will receive particular attention. And in addition to describing what is known about how the underlying mechanisms work (something that is understood in more detail in sensory contexts than in the case of value-based decision making), the course will consider the extent to which such mechanisms — while suboptimal from a normative standpoint that treats perfect knowledge of one's situation as costless and automatic — might actually represent efficient uses of the limited information and bounded information-processing resources available to actual people (or other organisms). Thus the course will consider both ways in which the realism of economic analysis may be improved by taking into account cognitive processes, and ways in which understanding of cognitive processes might be advanced by considering the economic problem of efficient use of limited (cognitive) resources

ECON GU4860 BEHAVIORAL FINANCE. 3.00 points.
Prerequisites: ECON UN3211 and ECON UN3213 and ECON UN3412
Prerequisites: ECON UN3211 and ECON UN3213 and ECON UN3412
Neoclassical finance theory seeks to explain financial market valuations and fluctuations in terms of investors having rational expectations and being able to trade without costs. Under these assumptions, markets are efficient in that stocks and other assets are always priced just right. The efficient markets hypothesis (EMH) has had an enormous influence over the past 50 years on the financial industry, from pricing to financial innovations, and on policy makers, from how markets are regulated to how monetary policy is set. But there was very little in prevailing EMH models to suggest the instabilities associated with the Financial Crisis of 2008 and indeed with earlier crises in financial market history. This course seeks to develop a set of tools to build a more robust model of financial markets that can account for a wider range of outcomes. It is based on an ongoing research agenda loosely dubbed "Behavioral Finance", which seeks to incorporate more realistic assumptions concerning human rationality and market imperfections into finance models. Broadly, we show in this course that limitations of human rationality can lead to bubbles and busts such as the Internet Bubble of the mid-1990s and the Housing Bubble of the mid-2000s; that imperfections of markets — such as the difficulty of short-selling assets — can cause financial markets to undergo sudden and unpredictable crashes; and that agency problems or the problems of institutions can create instabilities in the financial system as recently occurred during the 2008 Financial Crisis. These instabilities in turn can have feedback effects to the performance of the real economy in the form of corporate investments

Perception
PSYC BC2110 PERCEPTION-LECTURE. 3.00 points.
Prerequisites: PSYC BC1001 Introduction to Psychology or COGS UN1001
Introduction to Cognitive Science or permission of the instructor. Lecture course covering an introduction to problems, methods, and research in perception. Discussion of psychological studies of seeing, hearing, touching, tasting, and smelling. Note that this lecture can be taken without its affiliated lab, PSYC BC2109, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1480 Perception and Attention; and PSYC UN2230 Perception and Sensory Processes

Fall 2024: PSYC BC2110

Course Section/Call Times/Location Instructor Points Enrollment
Number Number
PSYC 2110 001/00070 M W 10:10am - 11:25am Robert Remez 3.00 47/55
323 Milbank Hall

PSYC BC3164 PERCEPTION AND LANGUAGE. 4.00 points.
Prerequisites: BC 1001 and one of the following: BC2106/2107, BC2109/2110, BC2118/2119, BC2128/2129, or permission of the instructor. Enrollment limited to 20 students
Psychological investigations of spoken communication from a listener's perspective. Topics include perception and sounds of speech and the apprehension of meaning from words and utterances; the perceptual basis for rhyme and rhythm in speech; and the natural history of vocal communication.

NSBV BC3381 Visual Neuroscience: From the Eyeball to the Mind's Eye. 4.00 points.
By absorbing electromagnetic radiation through their eyes, people are able to catch frisbees, recognize faces, and judge the beauty of art. For most of us, seeing feels effortless. That feeling is misleading. Seeing requires not only precise optics to focus images on the retina, but also the concerted action of millions of nerve cells in the brain. This intricate circuitry infers the likely causes of incoming patterns of light and transforms that information into feelings, thoughts, and actions. In this course we will study how light evokes electrical activity in a hierarchy of specialized neural networks that accomplish many unique aspects of seeing. Students will have the opportunity to focus their study on particular aspects, such as color, motion, object recognition, learning, attention, awareness, and how sight can be lost and recovered. Throughout the course we will discuss principles of neural information coding (e.g., receptive field tuning, adaptation, normalization, etc.) that are relevant to other areas of neuroscience, as well as medicine, engineering, art and design
NSBV BC3389 Hallucinations, illusions, dreaming and imagination. 4.00 points.
Perception is often taken as the most striking proof of something factual: when we perceive something, we interpret it as real. In this seminar we will challenge this assumption by taking into consideration states of altered perception, wherein the brain creates perceptual experiences that do not correspond to sensory input. Specifically, we will review a number of experiments showing changes in brain activity accompanying illusions, hallucinations, and dreaming across sensory modalities (i.e., vision, hearing, touch), and in both clinical and non-clinical populations. We will examine the similarities and differences between these states of altered perception both at the level of phenomenology and underlying biological mechanisms, specifically focusing on neural oscillations. Using the latest research findings in clinical, cognitive, and computational neuroscience, this seminar offers a great opportunity to learn more about how the brain creates perceptual experiences and why sometimes we perceive something that isn't real.

Spring 2024: NSBV BC3389

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBV 3389</td>
<td>001/00048</td>
<td>T 4:10pm - 6:00pm LD017 Milstein Center</td>
<td>Luca Iemi</td>
<td>4.00</td>
<td>14/12</td>
</tr>
</tbody>
</table>

Fall 2024: NSBV BC3389

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBV 3389</td>
<td>001/000106</td>
<td>W 4:10pm - 6:00pm 405 Barnard Hall</td>
<td>Luca Iemi</td>
<td>4.00</td>
<td>12/12</td>
</tr>
</tbody>
</table>

PSYC GU4225 CONSCIOUSNESS # ATTENTION. 4.00 points.
Prerequisites: the instructor's permission; some basic knowledge of cognitive science and neuroanatomy is desirable, but not necessary. Modern theories attempt to characterize the human mind in terms of information processing. But machines that process information do not seem to feel anything; a computer may for instance receive inputs from a video camera, yet it would be hard to imagine that it sees or experiences the vividness of colors like we do. Nobody has yet provided a convincing theory as to how to explain the subjective nature of our mental lives in objective physical terms. This is called the problem of consciousness, and is generally considered to be one of the last unsolved puzzles in science. Philosophers even debate whether there could be a solution to this problem at all. Students in this course may be recruited for participation in a voluntary research study. Students who choose not to participate in the study will complete the same course requirements as those who do, and an individual’s choice will not affect their grade or status as a student in the course.

Spring 2024: PSYC GU4225

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 4225</td>
<td>001/11916</td>
<td>T 12:10pm - 2:00pm 200c Schermerhorn Hall</td>
<td>Alfredo Spagna</td>
<td>4.00</td>
<td>14/15</td>
</tr>
</tbody>
</table>

PSYC GU4280 CORE KNOWLEDGE. 4.00 points.
Prerequisites: For undergraduates: courses in introductory psychology, cognitive or developmental psychology, and the instructor’s permission. Corequisites: PSYC UN1001 or PSYC UN1010 and a statistics course (PSYC UN1610 or the equivalent), or the instructor’s permission.

Social Cognition
PSYC UN1450 RESEARCH METHODS - SOCIAL COGNITION # EMOTION. 4.00 points.
Attendance at the first class is essential. Priority given to psychology majors. Fee: $70.
Prerequisites: PSYC UN1001 or PSYC UN1010 and a statistics course (PSYC UN1610 or the equivalent), or the instructor’s permission. Corequisites: PSYC UN1451
An introduction to research methods employed in the study of human social cognition and emotion. Students gain experience in the design and conduct of research, including ethical issues, observation and measurement techniques, interpretation of data, and preparation of written and oral reports.

Fall 2024: PSYC UN1450

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 1450</td>
<td>001/14844</td>
<td>M 10:10am - 12:00pm Room TBA</td>
<td>Kevin Ochsner</td>
<td>4.00</td>
<td>55/55</td>
</tr>
</tbody>
</table>

ANTH UN2004 INTRO TO SOC # CULTURAL THEORY. 3.00 points.
This course presents students with crucial theories of society, paying particular attention at the outset to classic social theory of the early 20th century. It traces a trajectory of writings essential for an understanding of the social: from Saussure, Durkheim, Mauss, Weber, and Marx, on to the structuralist ethnographic elaboration of Claude Levi-Strauss and the historiographic reflections on modernity of Michel Foucault. We revisit periodically, reflections by Franz Boas, founder of anthropology in the United States (and of Anthropology at Columbia), for a sense of origins, an early anthropological critique of racism and cultural chauvinism, and a prescient denunciation of fascism. We turn as well, also with ever-renewed interest in these times, to the expansive critical thought of W. E. B. Du Bois. We conclude with Kathleen Stewart’s A Space on the Side of the Road–an ethnography of late-twentieth-century Appalachia and the haunted remains of coal-mining country—with its depictions of an uncanny otherness within dominant American narratives.

Fall 2024: ANTH UN2004

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 2004</td>
<td>001/10726</td>
<td>M W 10:10am - 10:25am Room TBA</td>
<td>John Pemberton</td>
<td>3.00</td>
<td>36/60</td>
</tr>
</tbody>
</table>
PSYC UN2435 Social Neuroscience. 3.00 points.
This course will provide a broad overview of the field of social neuroscience. We will consider how social processes are implemented at the neural level, but also how neural mechanisms help give rise to social phenomena and cultural experiences. Many believe that the large expansion of the human brain evolved due to the complex demands of dealing with social others—competing or cooperating with them, deceiving or empathizing with them, understanding or misjudging them. What kind of "social brain" has this evolutionary past left us with? In this course, we will review core principles, theories, and methods guiding social neuroscience, as well as research examining the brain basis of processes such as theory of mind, emotion, stereotyping, social group identity, empathy, judging faces and bodies, morality, decision-making, the impact of culture and development, among others. Overall, this course will introduce students to the field of social neuroscience and its multi-level approach to understanding the brain in its social context.

Spring 2024: PSYC UN2435
Course Number: PSYC 2435
Section/Call Number: 001/11892
Times/Location: M W 2:40pm - 3:55pm, 501 Schermerhorn Hall
Instructor: Jon Freeman
Points: 3.00
Enrollment: 127/150

Fall 2024: PSYC UN2435
Course Number: PSYC 2435
Section/Call Number: 001/10672
Times/Location: M W 2:40pm - 3:55pm, Room TBA
Instructor: Jon Freeman
Points: 3.00
Enrollment: 103/120

PSYC UN2630 SOCIAL PSYCHOLOGY. 3.00 points.
Surveys important methods, findings, and theories in the study of social influences on behavior. Emphasizes different perspectives on the relation between individuals and society.

Fall 2024: PSYC UN2630
Course Number: PSYC 2630
Section/Call Number: 001/10694
Times/Location: T Th 2:40pm - 3:55pm, Room TBA
Instructor: Tory Higgins
Points: 3.00
Enrollment: 98/150