COGNITIVE SCIENCE

Department website: https://cogsci.barnard.edu/

326 Milbank Hall
212-854-4689

Director: Professor John Morrison, jmorriso@barnard.edu
Department Assistant: Maia Bernstein, mbernste@barnard.edu

Cognitive Science is the cross-disciplinary study of how the mind works, with a focus on perception, reasoning, memory, attention, language, decision-making, motor control, and problem solving. Cognitive scientists often compare minds to computers. In particular, they describe mental processes as computational operations on internal representations. For instance, perception is seen as a representation of the external world that results from sensory stimulation; learning is analyzed as the addition of new representations through interactions with the environment; reasoning is treated as the addition of new representations through operations on existing representations.

Cognitive Science is an interdisciplinary field: it draws on tools and ideas from psychology, neuroscience, linguistics, economics, computer science, and philosophy, with affiliated faculty in each of these disciplines. Psychologists study the computational operations that we use to solve specific tasks; neuroscientists study the implementation of those operations in the brain; linguists study the representations involved in communication; economists study the representations involved in decisions involving uncertainty and reward; computer scientists consider how the processes involved in human cognition fit into a more general theory of computations and a larger space of tasks; and philosophers ask fundamental questions about the nature of representation and computation.

Learning Objectives

Cognitive Science majors will gain fluency in computational methods; a capacity for rigorous and careful thought; a broad understanding of the affiliated disciplines; and a deep understanding of cognition.

Director: John Morrison (Philosophy, Barnard)

Steering Committee:
Mariusz S. Kozak (Music, Columbia)
John McWhorter (Linguistics, Columbia)
John Morrison (Psychology, Barnard)
Kevin Ochsner (Psychology, Columbia)
Christopher A.B. Peacocke (Philosophy, Columbia)
Robert Remez (Psychology, Barnard)
Ann Senghas (Psychology, Barnard)
Michael Woodford (Economics, Columbia)
Rebecca Wright (Computer Science, Barnard)

Affiliated Faculty:
Mariam Aly (Psychology, Columbia)
Dima Amso (Psychology, Columbia)
Christopher Baldassano (Psychology, Columbia)
Peter Balsam (Neuroscience & Behavior, Psychology, Barnard)
Sian Beilock (President, Barnard)
Akeel Bilgrami (Philosophy, Columbia)
José Carlos (Ph.D. Student, Columbia)
Lila Davachi (Psychology, Columbia)
Mark Dean (Economics, Columbia)

A major in Cognitive Science consists of seven required courses and four electives in a chosen area of specialization culminating in a year-long senior project. The minimum number of courses is 15 and the minimum number of points is 41.

Required courses (7 classes)

• COGS UN1001 Introduction to Cognitive Science
• One course in each of four areas: psychology, neuroscience, philosophy, and linguistics.
• Two courses in a fifth area: mathematical and computational methods. These two courses must be selected in consultation with the program director to make sure they aren’t redundant.
• Please see below for the lists of approved courses in each area.

Area of Specialization and Electives (four classes)

Students must choose an area of specialization when they declare the major and choose four electives to build expertise in that area.

• Possible areas of specialization include: spatial learning, musicality, consciousness, emotion, dynamic semantics, natural language processing, talker recognition, computer vision, audiovisual integration, decision science, and neuroeconomics.
• The choice of specialization is flexible; there is not a predefined list. This is an opportunity for students to be creative; a student who has ideas about a new specialization that they would like to pursue may do so with the approval of the program director.
• Although there is no predefined list, each student’s area of specialization and choice of electives must be approved by the program director, and there must be at least one faculty member affiliated with the program who has expertise in the student’s chosen area.
• The program director will consult with a faculty member who has expertise in the student’s area of specialization to ensure that the student’s electives will provide sufficient preparation for the senior project.
• Please see the list of possible electives below, but please keep in mind that this list is not definitive. Any Barnard or Columbia (or approved transfer) course that builds expertise in the student’s area
of specialization may be counted as an elective with the approval of the program director.

Senior Project (four classes)

The senior project ("capstone experience") is a year-long project in a student's area of specialization under the supervision of a chosen advisor. The project could be an experiment or a paper. Students register for the senior project through their sponsor's department (3 credits per semester). Students also register for a year-long majors' seminar (COGS UN3901 Senior Project Seminar in the fall and COGS UN3902 Senior Project Seminar in the spring, 1 credit per semester). The seminar is an opportunity for students to present their projects to each other.

Courses approved to count in each area:

Psychology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBV BC3380</td>
<td>Cognitive Neuroscience</td>
</tr>
<tr>
<td>PSYC BC2110</td>
<td>PERCEPTION-LECTURE</td>
</tr>
<tr>
<td>PSYC BC2115</td>
<td>COGNITIVE PSYCHOLOGY - LEC</td>
</tr>
<tr>
<td>PSYC UN2220</td>
<td>Cognition: Memory and Stress</td>
</tr>
<tr>
<td>PSYC UN2430</td>
<td>COGNITIVE NEUROSCIENCE</td>
</tr>
</tbody>
</table>

Neuroscience

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBV BC1001</td>
<td>INTRODUCTION TO NEUROSCIENCE</td>
</tr>
<tr>
<td>PSYC UN2450</td>
<td>Behavioral Neuroscience</td>
</tr>
</tbody>
</table>

Philosophy

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL UN2655</td>
<td>COGNITIVE SCIENCE AND PHILOSOPHY</td>
</tr>
<tr>
<td>PHIL UN3252</td>
<td>Philosophy of Language and Mind</td>
</tr>
<tr>
<td>PHIL UN3655</td>
<td>TOPICS IN COGNITIVE SCIENCE AND PHILOSOPHY</td>
</tr>
<tr>
<td>PHIL UN3912</td>
<td>Seminar: Political Philosophy</td>
</tr>
</tbody>
</table>

Please note that only the "Perception" section of PHIL UN3912 counts.

Linguistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LING UN3101</td>
<td>Introduction to Linguistics</td>
</tr>
</tbody>
</table>

Mathematical and Computational Methods

Logic and Decision Theory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON GU4850</td>
<td>Introduction to Logic</td>
</tr>
<tr>
<td>PHIL UN1401</td>
<td>SYMBOLIC LOGIC</td>
</tr>
<tr>
<td>PHIL UN3411</td>
<td>Probability and Decision Theory</td>
</tr>
<tr>
<td>PSYC UN2235</td>
<td>THINKING AND DECISION MAKING</td>
</tr>
</tbody>
</table>

Statistics:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON BC2411</td>
<td>Statistics for Economics</td>
</tr>
<tr>
<td>PSYC BC1101</td>
<td>Statistics</td>
</tr>
<tr>
<td>PSYC UN1610</td>
<td>Introductory Statistics for Behavioral</td>
</tr>
<tr>
<td></td>
<td>Scientists</td>
</tr>
<tr>
<td>STAT UN1101</td>
<td>Introduction to Statistics</td>
</tr>
<tr>
<td>STAT UN1201</td>
<td>Calculus-Based Introduction to Statistics</td>
</tr>
</tbody>
</table>

Computer Science:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMS BC1016</td>
<td>Introduction to Computational Thinking</td>
</tr>
<tr>
<td></td>
<td>and Data Science</td>
</tr>
</tbody>
</table>

Possible electives:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH UN1009</td>
<td>Introduction to Language and Culture</td>
</tr>
<tr>
<td>COGS GU4050</td>
<td>Natural and Artificial Neural Networks Lab</td>
</tr>
<tr>
<td>COMS W4170</td>
<td>User Interface Design</td>
</tr>
<tr>
<td>COMS W4701</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>COMS W4705</td>
<td>Natural Language Processing</td>
</tr>
<tr>
<td>COMS W4731</td>
<td>Computer Vision</td>
</tr>
<tr>
<td>COMS W4771</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>COMS W4772</td>
<td>Advanced Machine Learning</td>
</tr>
<tr>
<td>ECON GU4020</td>
<td>Behavioral Finance</td>
</tr>
<tr>
<td>ECON GU4840</td>
<td>BEHAVIORAL ECONOMICS</td>
</tr>
<tr>
<td>ECON GU4860</td>
<td>Behavioral Finance</td>
</tr>
<tr>
<td>LING GU4202</td>
<td>COGNITIVE LINGUISTICS</td>
</tr>
<tr>
<td>LING GU4206</td>
<td>Advanced Grammar and Grammars</td>
</tr>
<tr>
<td>LING GU4376</td>
<td>Phonetics and Phonology</td>
</tr>
<tr>
<td>LING GU4903</td>
<td>Syntax</td>
</tr>
<tr>
<td>NSBV BC3381</td>
<td>Visual Neuroscience: From the Eyeball to</td>
</tr>
<tr>
<td></td>
<td>the Mind's Eye</td>
</tr>
<tr>
<td>MUSI GU4325</td>
<td>Introduction to Cognitive Musicology</td>
</tr>
<tr>
<td>PHIL UN1001</td>
<td>Introduction to Philosophy</td>
</tr>
<tr>
<td>PHIL UN2685</td>
<td>Introduction to Philosophy of Language</td>
</tr>
<tr>
<td>PHIL UN3685</td>
<td>The Nature and Significance of Animal</td>
</tr>
<tr>
<td></td>
<td>Minds</td>
</tr>
<tr>
<td>PHIL GU4495</td>
<td>Perception</td>
</tr>
<tr>
<td>PHIL GU4660</td>
<td>Philosophy of Mind</td>
</tr>
<tr>
<td>PSYC BC1001</td>
<td>Introduction to Psychology</td>
</tr>
<tr>
<td>PSYC BC2107</td>
<td>PSYCHOLOGY OF LEARNING - LEC</td>
</tr>
<tr>
<td>PSYC BC2129</td>
<td>DEVELOPMENTAL PSYCHOLOGY-LEC</td>
</tr>
<tr>
<td>PSYC BC2163</td>
<td>Human Learning and Memory</td>
</tr>
<tr>
<td>PSYC BC3164</td>
<td>Perception and Language</td>
</tr>
<tr>
<td>PSYC BC3369</td>
<td>Language Development</td>
</tr>
<tr>
<td>PSYC BC3372</td>
<td>Comparative Cognition</td>
</tr>
<tr>
<td>PSYC BC3381</td>
<td>Theory of Mind and Intentionality</td>
</tr>
<tr>
<td>PSYC BC3384</td>
<td>Social Cognition</td>
</tr>
<tr>
<td>PSYC BC3390</td>
<td>Canine Cognition</td>
</tr>
<tr>
<td>PSYC BC3394</td>
<td>Metacognition</td>
</tr>
<tr>
<td>PSYC BC3399</td>
<td>Humans and Machines</td>
</tr>
<tr>
<td>PSYC UN1001</td>
<td>The Science of Psychology</td>
</tr>
<tr>
<td>PSYC UN2250</td>
<td>Evolution of Cognition</td>
</tr>
<tr>
<td>PSYC UN2280</td>
<td>Developmental Psychology</td>
</tr>
<tr>
<td>PSYC UN3270</td>
<td>Computational Approaches to Human Vision</td>
</tr>
<tr>
<td></td>
<td>(Seminar)</td>
</tr>
<tr>
<td>PSYC UN3290</td>
<td>Self: A Cognitive Exploration (Seminar)</td>
</tr>
</tbody>
</table>
Psychology:

supervised by a cognitive scientist working at Barnard or Columbia that culminate in written and oral senior theses. Each project must be

COGS UN3902 Senior Project Seminar.

Discussion of senior research projects during the fall and spring terms

COGS UN3903 Senior Project Seminar.

Discussion of senior research projects during the fall and spring terms

The goal of cognitive science — and of this course — is to understand

the mind works. Trying to understand our own minds is perhaps the most ambitious and exciting (and difficult) project in all of science, and this project requires tools drawn from fields including experimental psychology, computer science and artificial intelligence, linguistics, vision science, philosophy, anthropology, behavioral economics, and several varieties of neuroscience (among others). This course will introduce you to the major tools and theories from these areas, as they relate to the study of the mind. We will employ these perspectives while exploring the nature of mental processes such as perception, reasoning, memory, attention, imagery, language, intelligence, decision-making, morality — and even attraction and love. In sum, this course will expose you to cognitive science, the assumptions on which it rests, and many of the most important and fascinating results obtained so far.

Required Courses

Required for all Cognitive Science majors:

COGS UN1001 Introduction to Cognitive Science. 3.00 points.

The goal of cognitive science — and of this course — is to understand how the mind works. Trying to understand our own minds is perhaps the most ambitious and exciting (and difficult) project in all of science, and this project requires tools drawn from fields including experimental psychology, computer science and artificial intelligence, linguistics, vision science, philosophy, anthropology, behavioral economics, and several varieties of neuroscience (among others). This course will introduce you to the major tools and theories from these areas, as they relate to the study of the mind. We will employ these perspectives while exploring the nature of mental processes such as perception, reasoning, memory, attention, imagery, language, intelligence, decision-making, morality — and even attraction and love. In sum, this course will expose you to cognitive science, the assumptions on which it rests, and many of the most important and fascinating results obtained so far.

COGS UN3901 Senior Project Seminar. 1.00 point.

Discussion of senior research projects during the fall and spring terms that culminate in written and oral senior theses. Each project must be supervised by a cognitive scientist working at Barnard or Columbia.

COGS UN3902 Senior Project Seminar. 1.00 point.

Discussion of senior research projects during the fall and spring terms that culminate in written and oral senior theses. Each project must be supervised by a cognitive scientist working at Barnard or Columbia.

Majors:

Required Courses

Required for all Cognitive Science majors:

PSYC UN3445 The Brain & Memory

PSYC UN3450 Evolution of Intelligence, Animal Communication, # Language

PSYC GU4202 Theories of Change in Human Development

PSYC GU4222 The Cognitive Neuroscience of Aging (Seminar)

PSYC GU4223 CONSCIOUSNESS # ATTENTION

PSYC GU4225 Attention and Perception

PSYC GU4239 Cognitive neuroscience of narrative and film

PSYC GU4242 Evolution of Language (Seminar)

PSYC GU4244 Language and Mind

PSYC GU4270 Cognitive Processes (Seminar)

PSYC GU4280 Core Knowledge (Seminar)

PSYC GU4281 The Psychology of Curiosity

PSYC GU4287 Decision Architecture

PSYC GU4289 THE GAMES PEOPLE PLAY:PSYCH OF STRAT DEC

PSYC GU4430 Non-Mnemonic Functions of Memory Systems

SOAR AV4000 SOUND:Music, Math, and Mind

NSBV BC3380 Cognitive Neuroscience. 4 points.

Prerequisites: BC1001 and permission of the instructor. Enrollment limited to 20 students.

Exposition of research and theory in neuroscience with an emphasis on the use of neural imaging techniques (EEG, evoked potentials, MEG, PET, fMRI) for exploring sensation, perception, and cognition in the healthy, intact brain.

PSYC BC2110 PERCEPTION-LECTURE. 3.00 points.

Prerequisites: PSYC BC1001 or permission of the instructor. Lecture course covering an introduction to problems, methods, and research in perception. Discussion of psychological studies of seeing, hearing, touching, tasting, and smelling. Note that this lecture can be taken without its affiliated lab, PSYC BC2109, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1480 Perception and Attention; and PSYC UN2230 Perception and Sensory Processes.

PSYC BC2115 COGNITIVE PSYCHOLOGY - LEC. 3.00 points.

Prerequisites: BC1001 or permission of the instructor. Lecture covering selected topics illustrating the methods, findings, and theories of contemporary cognitive psychology. Topics include attention, memory, categorization, perception, and decision making. Special topics include neuropsychology and cognitive neuroscience. Note that this lecture can be taken without its affiliated lab, PSYC BC2114, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University courses are considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1480 Perception and Attention; and PSYC UN2230 Perception and Sensory Processes.

PSYC UN2220 Cognition: Memory and Stress. 3 points.

CC/GS: Partial Fulfillment of Science Requirement. Attendance at the first class is mandatory.

Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor’s permission.

Memory, attention, and stress in human cognition.

PSYC UN2430 COGNITIVE NEUROSCIENCE. 3.00 points.

CC/GS: Partial Fulfillment of Science Requirement.

Prerequisites: PSYC UN1001 or equivalent introductory course in Psychology.

This course provides an in-depth survey of data and models of a wide variety of human cognitive functions. Drawing on behavioral, neuropsychological, and neuroimaging research, the course explores the neural mechanisms underlying complex cognitive processes, such as perception, memory, and decision making. Importantly, the course examines the logic and assumptions that permit us to interpret brain activity in psychological terms.

Neuroscience
NSBV BC1001 INTRODUCTION TO NEUROSCIENCE. 3 points.
This course is required for all the other courses offered in Neuroscience and Behavior. The course introduces students to the anatomy and physiology of the nervous system. The topics include the biological structure of the nervous system and its different cell types, the basis of the action potential, principles of neurotransmission, neuronal basis of behavior, sleep/wake cycles, and basic aspects of clinical neuroscience.

PSYC UN2450 Behavioral Neuroscience. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor’s permission.
Examines the principles governing neuronal activity, the role of neurotransmitter systems in memory and motivational processes, the presumed brain dysfunctions that give rise to schizophrenia and depression, and philosophical issues regarding the relationship between brain activity and subjective experience.

PHIL UN2655 COGNITIVE SCIENCE AND PHILOSOPHY. 3 points.
This course will survey a number of topics at the intersection of cognitive science and philosophy. Potential topics include free will, consciousness, embodied cognition, artificial intelligence, neural networks, and the language of thought.

PHIL UN3252 Philosophy of Language and Mind. 3 points.
This course will provide an introduction to meaning, reference, understanding, and content in language, thought, and perception. A central concern will be the question of the relation of meaning to truth-conditions, and what is involved in language and thought successfully latching on to reality. If you have not already taken an elementary course in first order logic, you will need to catch up in that area to understand some crucial parts of the course. All the same, the primary concerns of the course will be philosophical, rather than technical.

PHIL UN3655 TOPICS IN COGNITIVE SCIENCE AND PHILOSOPHY. 3.00 points.
This course will focus on one topic at the intersection of cognitive science and philosophy. Potential topics include free will, consciousness, modularity, mental representation, probabilistic inference, the language of thought, and the computational theory of mind

PHIL UN3912 Seminar: Political Philosophy. 3 points.
Prerequisites: required of senior majors, but also open to junior majors and junior and senior concentrators who have taken at least four philosophy courses.
This seminar will read some major works in Political Philosophy and link them to some central issues in Ethics, Meta Ethics, Moral Psychology, and Philosophy of Mind. Texts will include among others: Aristotle’s Nicomachean Ethics, Locke’s Second Treatise on Government, Hume’s A Treatise of Human Nature, Marx’s Economic and Philosophical Manuscripts of 1844, Mill’s On Liberty, Isaiah Berlin’s “Two Concepts of Liberty”, Rawls’s A Theory of Justice and Political Liberalism, Garret Hardin’s “Tragedy of the Commons”, Brian Barry’s Culture and Equality, Charles Taylor’s “A Radical Redefinition of Secularism”, Gandhi’s Hind Swaraj, among others. Requirements: Strictly regular attendance and a term paper at the end of the semester. Possibly also a class presentation (though we will decide that on the first day of class when we decide what format to adopt for each week).

(Please note that only the "Perception" section of the PHIL UN3912 Seminar counts towards your Cognitive Science major; that section is not offered every year.)

LING UN3101 Introduction to Linguistics. 3 points.
An introduction to the study of language from a scientific perspective. The course is divided into three units: language as a system (sounds, morphology, syntax, and semantics), language in context (in space, time, and community), and language of the individual (psycholinguistics, errors, aphasia, neurology of language, and acquisition). Workload: lecture, weekly homework, and final examination.

Mathematical and Computational Methods

PHIL UN1401 Introduction to Logic. 3 points.
Explicit criteria for recognizing valid and fallacious arguments, together with various methods for schematizing discourse for the purpose of logical analysis. Illustrative material taken from science and everyday life.

PHIL UN3411 SYMBOLIC LOGIC. 4.00 points.
Corequisites: PHILV3413 Required Discussion Section (0 points). Advanced introduction to classical sentential and predicate logic. No previous acquaintance with logic is required; nonetheless a willingness to master technicalities and to work at a certain level of abstraction is desirable

PHIL GU4561 Probability and Decision Theory. 3 points.
Examines interpretations and applications of the calculus of probability including applications as a measure of degree of belief, degree of confirmation, relative frequency, a theoretical property of systems, and other notions of objective probability or chance. Attention to epistemological questions such as Hume’s problem of induction, Goodman’s problem of projectibility, and the paradox of confirmation.

PSYC UN2235 THINKING AND DECISION MAKING. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: an introductory course in psychology.
Prerequisites: an introductory course in psychology. Models of judgment and decision making in both certain and uncertain or risky situations, illustrating the interplay of top-down (theory-driven) and bottom-up (data-driven) processes in creating knowledge. Focuses on how individuals do and should make decisions, with some extensions to group decision making and social dilemmas

Statistics

ECON BC2411 Statistics for Economics. 4 points.
Elementary computational methods in statistics. Basic techniques in regression analysis of econometric models. One-hour weekly recitation sessions to complement lectures.
PSYC BC1101 Statistics. 4 points.
BC: Fulfillment of General Education Requirement: Quantitative and Deductive Reasoning (QUA). Recitation Section Required

Prerequisites: BC1001 and departmental permission via Barnard Department of Psychology Lab and Statistics Lottery (students enter lottery online to choose recitation section the previous semester). Enrollment limited to 18 students per recitation section.

Lecture course introducing students to statistics and its applications to psychological research. The course covers basic theory, conceptual underpinnings, and common statistics.

PSYC UN1610 Introductory Statistics for Behavioral Scientists. 4 points.
Lecture and lab. Priority given to psychology majors. Fee $70.

Prerequisites: PSYC UN1001 or PSYC UN1010 Recommended preparation: one course in behavioral science and knowledge of high school algebra.
Corequisites: PSYC UN1611

Introduction to statistics that concentrates on problems from the behavioral sciences.

STAT UN1101 Introduction to Statistics. 3 points.

Prerequisites: intermediate high school algebra.

Designed for students in fields that emphasize quantitative methods. Graphical and numerical summaries, probability, theory of sampling distributions, linear regression, analysis of variance, confidence intervals and hypothesis testing. Quantitative reasoning and data analysis. Practical experience with statistical software. Illustrations are taken from a variety of fields. Data-collection/analysis project with emphasis on study designs is part of the coursework requirement.

STAT UN1201 Calculus-Based Introduction to Statistics. 3 points.

Prerequisites: one semester of calculus.

Designed for students who desire a strong grounding in statistical concepts with a greater degree of mathematical rigor than in STAT W1111. Random variables, probability distributions, pdf, cdf, mean, variance, correlation, conditional distribution, conditional mean and conditional variance, law of iterated expectations, normal, chi-square, F and t distributions, law of large numbers, central limit theorem, parameter estimation, unbiasedness, consistency, efficiency, hypothesis testing, p-value, confidence intervals, maximum likelihood estimation. Serves as the pre-requisite for ECON W3412.

COMS BC1016 Introduction to Computational Thinking and Data Science. 3.00 points.
This course and its co-requisite lab course will introduce students to the methods and tools used in data science to obtain insights from data. Students will learn how to analyze data arising from real-world phenomena while mastering critical concepts and skills in computer programming and statistical inference. The course will involve hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. The course is ideal for students looking to increase their digital literacy and expand their use and understanding of computation and data analysis across disciplines. No prior programming or college-level math background is required.

COMS W1001 Introduction to Information Science. 3 points.

Basic introduction to concepts and skills in Information Sciences: human-computer interfaces, representing information digitally, organizing and searching information on the World Wide Web, principles of algorithmic problem solving, introduction to database concepts, and introduction to programming in Python.

COMS W1002 Computing in Context. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

Introduction to elementary computing concepts and Python programming with domain-specific applications. Shared CS concepts and Python programming lectures with track-specific sections. Track themes will vary but may include computing for the social sciences, computing for economics and finance, digital humanities, and more. Intended for nonmajors. Students may only receive credit for one of ENGI E1006 and COMS W1002.

COMS W1004 INTRO-COMPUT SCI/PROG IN JAVA. 3.00 points.
A general introduction to computer science for science and engineering students interested in majoring in computer science or engineering. Covers fundamental concepts of computer science, algorithmic problem-solving capabilities, and introductory Java programming skills. Assumes no prior programming background. Columbia University students may receive credit for only one of the following two courses: 1004 or 1005.

COMS W1007 Honors Introduction to Computer Science. 3 points.

Prerequisites: AP Computer Science with a grade of 4 or 5 or similar experience.

An honors-level introduction to computer science, intended primarily for students considering a major in computer science. Computer science as a science of abstraction. Creating models for reasoning about and solving problems. The basic elements of computers and computer programs. Implementing abstractions using data structures and algorithms. Taught in Java.
COGS GU4050 Natural and Artificial Neural Networks. 3.00 points.
Understanding the powers and limitations of artificial neural networks requires exposure to both concepts and practice. This lab section focuses on the latter, supplementing the conceptual framework from the lecture, Natural and Artificial Neural Networks. The lab focuses on giving students without a background in computer science hands-on experience with basic programming in Python, tools for data science, and a variety of machine learning algorithms

COGS W4170 User Interface Design. 3 points.
Prerequisites: COMS W3134, W3136, or W3137.
Introduction to the theory and practice of computer user interface design, emphasizing the software design of graphical user interfaces. Topics include basic interaction devices and techniques, human factors, interaction styles, dialogue design, and software infrastructure. Design and programming projects are required.

COGS W4701 Artificial Intelligence. 3 points.
Prerequisites: COMS W3134, W3136, or W3137.
Provides a broad understanding of the basic techniques for building intelligent computer systems. Topics include state-space problem representations, problem reduction and and-or graphs, game playing and heuristic search, predicate calculus, and resolution theorem proving. AI systems and languages for knowledge representation, machine learning and concept formation and other topics such as natural language processing may be included as time permits.

COGS W4705 Natural Language Processing. 3 points.
Prerequisites: COMS W3134, W3136, or W3137, or the instructor's permission.
Computational approaches to natural language generation and understanding. Recommended preparation: some previous or concurrent exposure to AI or Machine Learning. Topics include information extraction, summarization, machine translation, dialogue systems, and emotional speech. Particular attention is given to robust techniques that can handle understanding and generation for the large amounts of text on the Web or in other large corpora. Programming exercises in several of these areas.

Electives

ANTH UN1009 Introduction to Language and Culture. 3 points.
This is an introduction to the study of the production, interpretation, and reproduction of social meanings as expressed through language. In exploring language in relation to culture and society, it focuses on how communication informs and transforms the sociocultural environment.

COGS GU4050 Natural and Artificial Neural Networks. 3.00 points.
Artificial neural networks can do amazing things. They can play chess, recognize faces, predict human behavior, learn language, and create art. Natural neural networks – that is to say, brains – can do many of the same things, often a little more clumsily. But, unlike artificial networks, they can switch seamlessly between two tasks, learn to perform them without supervision, and do not need to be told to – actually, they can choose to refuse. Brains provided the initial inspiration for the artificial networks, which is why we call them 'artificial neural networks.' But how deep are the similarities between the two? Do they share more than a few abilities, a similar structure, and a common nomenclature?
COMS W4731 Computer Vision. 3 points.

Prerequisites: the fundamentals of calculus, linear algebra, and C programming. Students without any of these prerequisites are advised to contact the instructor prior to taking the course. Introductory course in computer vision. Topics include image formation and optics, image sensing, binary images, image processing and filtering, edge extraction and boundary detection, region growing and segmentation, pattern classification methods, brightness and reflectance, shape from shading and photometric stereo, texture, binocular stereo, optical flow and motion, 2-D and 3-D object representation, object recognition, vision systems and applications.

COMS W4771 Machine Learning. 3 points.

Lect: 3.

Prerequisites: Any introductory course in linear algebra and any introductory course in statistics are both required. Highly recommended: COMS W4701 or knowledge of Artificial Intelligence. Topics from generative and discriminative machine learning including least squares methods, support vector machines, kernel methods, neural networks, Gaussian distributions, linear classification, linear regression, maximum likelihood, exponential family distributions, Bayesian networks, Bayesian inference, mixture models, the EM algorithm, graphical models and hidden Markov models. Algorithms implemented in MATLAB.

COMS W4772 Advanced Machine Learning. 3 points.

Prerequisites: COMS W4771 or the instructor's permission; knowledge of linear algebra & introductory probability or statistics is required. An exploration of advanced machine learning tools for perception and behavior learning. How can machines perceive, learn from, and classify human activity computationally? Topics include Appearance-Based Models, Principal and Independent Components Analysis, Dimensionality Reduction, Kernel Methods, Manifold Learning, Latent Models, Regression, Classification, Bayesian Methods, Maximum Entropy Methods, Real-Time Tracking, Extended Kalman Filters, Time Series Prediction, Hidden Markov Models, Factorial HMMS, Input-Output HMMs, Markov Random Fields, Variational Methods, Dynamic Bayesian Networks, and Gaussian/Dirichlet Processes. Links to cognitive science.

ECON GU4840 Behavioral Economics. 3.00 points.

Prerequisites: ECON UN3211 and ECON UN3213

Prerequisites: ECON UN3211 and ECON UN3213 Within economics, the standard model of behavior is that of a perfectly rational, self interested utility maximizer with unlimited cognitive resources. In many cases, this provides a good approximation to the types of behavior that economists are interested in. However, over the past 30 years, experimental and behavioral economists have documented ways in which the standard model is not just wrong, but is wrong in ways that are important for economic outcomes. Understanding these behaviors, and their implications, is one of the most exciting areas of current economic inquiry. The aim of this course is to provide a grounding in the main areas of study within behavioral economics, including temptation and self control, fairness and reciprocity, reference dependence, bounded rationality and choice under risk and uncertainty. For each area we will study three things: 1. The evidence that indicates that the standard economic model is missing some important behavior 2. The models that have been developed to capture these behaviors 3. Applications of these models to (for example) finance, labor and development economics. As well as the standard lectures, homework assignments, exams and so on, you will be asked to participate in economic experiments, the data from which will be used to illustrate some of the principals in the course. There will also be a certain small degree of classroom "flipping", with a portion of many lectures given over to group problem solving. Finally, an integral part of the course will be a research proposal that you must complete by the end of the course, outlining a novel piece of research that you would be interested in doing.

ECON GU4860 Behavioral Finance. 3 points.

Prerequisites: ECON UN3211 and ECON UN3213 and ECON UN3412 Neoclassical finance theory seeks to explain financial market valuations and fluctuations in terms of investors having rational expectations and being able to trade without costs. Under these assumptions, markets are efficient in that stocks and other assets are always priced just right. The efficient markets hypothesis (EMH) has had an enormous influence over the past 50 years on the financial industry, from pricing to financial innovations, and on policy makers, from how markets are regulated to how monetary policy is set. But there was very little in prevailing EMH models to suggest the instabilities associated with the Financial Crisis of 2008 and indeed with earlier crises in financial market history. This course seeks to develop a set of tools to build a more robust model of financial markets that can account for a wider range of outcomes. It is based on an ongoing research agenda loosely dubbed "Behavioral Finance", which seeks to incorporate more realistic assumptions concerning human rationality and market imperfections into finance models. Broadly, we show in this course that limitations of human rationality can lead to bubbles and busts such as the Internet Bubble of the mid-1990s and the Housing Bubble of the mid-2000s; that imperfections of markets — such as the difficulty of short-selling assets — can cause financial markets to undergo sudden and unpredictable crashes; and that agency problems or the problems of institutions can create instabilities in the financial system as recently occurred during the 2008 Financial Crisis. These instabilities in turn can have feedback effects to the performance of the real economy in the form of corporate investments.
LING GU4202 COGNITIVE LINGUISTICS. 3.00 points.
Prerequisites: LING UN3101 previously or concurrently.
Reading and discussion of scholarly literature on the cognitive approach to language, including: usage-oriented approaches to language, frame semantics, construction grammar, theories of conceptual metaphor and mental spaces; alongside of experimental research on language acquisition, language memory, prototypical and analogous thinking, and the role of visual imagery in language processing.

LING GU4206 Advanced Grammar and Grammars. 3 points.
Prerequisites: LING UN3101 LING W3101.
An investigation of the possible types of grammatical phenomena (argument structure, tense/aspect/mood, relative clauses, classifiers, and deixis). This typological approach is enriched by the reading of actual grammars of languages from Asia, Africa, Australia, and the Americas in which grammatical descriptions are read with an eye to important notional concepts of grammar: reference and categorization, case and role of arguments with predicates (ergativity), tense/aspect/mood. Discussion of meaning is combined with attention to expression (that is, morphology), which yanks our attention towards language change (grammaticalization).

LING GU4376 Phonetics and Phonology. 3 points.
Prerequisites: LING UN3101
An investigation of the sounds of human language, from the perspective of phonetics (articulation and acoustics, including computer-aided acoustic analysis) and phonology (the distribution and function of sounds in individual languages).

LING GU4903 Syntax. 3 points.
Prerequisites: LING UN3101
Syntax - the combination of words - has been at the center of the Chomskyan revolution in Linguistics. This is a technical course which examines modern formal theories of syntax, focusing on later versions of generative syntax (Government and Binding) with secondary attention to alternative models (HPSG, Categorial Grammar).

NSBV BC3381 Visual Neuroscience: From the Eyeball to the Mind's Eye. 4.00 points.
By absorbing electromagnetic radiation through their eyes, people are able to catch frisbees, recognize faces, and judge the beauty of art. For most of us, seeing feels effortless. That feeling is misleading. Seeing requires not only precise optics to focus images on the retina, but also the concerted action of millions of nerve cells in the brain. This intricate circuitry infers the likely causes of incoming patterns of light and transforms that information into feelings, thoughts, and actions. In this course we will study how light evokes electrical activity in a hierarchy of specialized neural networks that accomplish many unique aspects of seeing. Students will have the opportunity to focus their study on particular aspects, such as color, motion, object recognition, learning, attention, awareness, and how sight can be lost and recovered. Throughout the course we will discuss principles of neural information coding (e.g., receptive field tuning, adaptation, normalization, etc.) that are relevant to other areas of neuroscience, as well as medicine, engineering, art and design.

MUSI GU4325 Introduction to Cognitive Musicology. 3 points.
This course is an introduction to a variety of key topics in the field of cognitive musicology, including human development, evolution, neural processing, embodied knowledge, memory and anticipation, cross-cultural perspectives, and emotions. The course explores recent research on these topics, as well as ways in which this research can be applied to music scholarship.

PHIL UN1001 Introduction to Philosophy. 3 points.
Survey of some of the central problems, key figures, and great works in both traditional and contemporary philosophy. Topics and texts will vary with instructor and semester.

PHIL UN2685 Introduction to Philosophy of Language. 3 points.
This course gives students an introduction to various topics in the Philosophy of Language.

PHIL UN3840 The Nature and Significance of Animal Minds. 3 points.
Humans have a complicated relationship with other animals. We love them, befriend them and save them. We hunt, farm and eat them. We experiment on and observe them to discover more about them and to discover more about ourselves. For many of us, our pets are amongst the most familiar inhabitants of our world. Yet when we try to imagine what is going on in a dog or cat's mind--let alone that of a crow, octopus or bee--many of us are either stumped about how to go about this, or (the science strongly suggests) getting things radically wrong. Is our thought about and behavior towards animals ethically permissible, or even consistent, Can we reshape our habits of thought about animals to allow for a more rational, richer relationship with the other inhabitants of our planet? In this course, students will reflect on two closely intertwined questions: an ethical question, what sort of relationship ought we to have with animals?; and a metaphysical question, what is the nature of animal minds? Readings will primarily be from philosophy and ethics and the cognitive sciences, with additional readings from literature and biology. There are no prerequisites for this class--it will be helpful but certainly not necessary to have taken previous classes in philosophy/ethics and philosophy of mind or in cognitive science.

PHIL GU4495 Perception. 3 points.
This course addresses the fabulously rich range of issues about the nature of perception, including: perceptual mental representation and its content; computational explanation; justifying beliefs; knowledge and thought about perception; and perception of music. Perception is an interdisciplinary subject par excellence. Readings will be drawn from philosophy and psychology, aesthetics, and artificial intelligence.

PHIL GU4660 Philosophy of Mind. 3 points.

PSYC BC1001 Introduction to Psychology. 3 points.
Prerequisites: This course is prerequisite for all other psychology courses.
Lecture course introducing students to the chief facts, principles, and problems of human and animal behavior, through systematic study of a text, lectures, exercises, reading in special fields, and participation in a current experiment. (An alternative to participation can be arranged at the student's request.)

PSYC BC2107 PSYCHOLOGY OF LEARNING - LEC. 3.00 points.
Prerequisites: BC1001 Introduction of Psychology or permission of the instructor. Enrollment limited to 72 students.
Prerequisites: PSYC BC1001 Introduction of Psychology or permission of the instructor. Lecture course covering the basic methods, results, and theory in the study of how experience affects behavior. The roles of early exposure, habituation, sensitization, conditioning, imitation, and memory in the acquisition and performance of behavior are studied. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN1440 Experimental: Learning and Motivation.
PSYC BC2129 DEVELOPMENTAL PSYCHOLOGY-LEC. 3.00 points.
Prerequisites: BC1001 or permission of the instructor.
Prerequisites: BC1001 or permission of the instructor. Lecture course covering cognitive, linguistic, perceptual, motor, social, affective, and personality development from infancy to adolescence. Note that this lecture can be taken without its affiliated lab, PSYC BC2128, however, if a student completes this lecture, she cannot enroll in the lab in a later semester. The following Columbia University course is considered overlapping and a student cannot receive credit for both the BC course and the equivalent CU course: PSYC UN2280 Introduction to Developmental Psychology

PSYC BC2163 Human Learning and Memory. 3 points.
Prerequisites: BC1001 and at least one psychology lab course, or permission of the instructor. Enrollment limited to 20 students. Survey of contemporary theories and empirical research on human memory. Topics will include sensory, short term and long term memory, levels of processing, organization, forgetting, and encoding specificity. Special topics include eyewitness testimony, amnesia, implicit memory, and false memory.

PSYC BC3164 Perception and Language. 4 points.
Prerequisites: BC 1001 and one of the following: BC2106/2107, BC2109/2110, BC2118/2119, BC2128/2129, or permission of the instructor. Enrollment limited to 20 students. Psychological investigations of spoken communication from a listener’s perspective. Topics include perception and sounds of speech and the apprehension of meaning from words and utterances; the perceptual basis for rhyme and rhythm in speech; and the natural history of vocal communication.

PSYC BC3369 Language Development. 4 points.
Not offered during 2022-23 academic year.
Prerequisites: BC1001, one Psychology laboratory course, one of the following: PSYC W2240, BC1128/1129, BC1129, or LIN BC V1101, and permission of the instructor. Enrollment limited to 15 students. Examines the acquisition of a first language by children, from babbling and first words to complex sentence structure and wider communicative competence. Signed and spoken languages, cross-linguistic variation and universalities, language genesis and change, and acquisition by atypical populations will be discussed.

PSYC BC3372 Comparative Cognition. 4 points.
Not offered during 2022-23 academic year.
Prerequisites: BC1001 and one additional course in psychology, or permission of the instructor. Enrollment limited to 20 students. Review and critical evaluation of current empirical research investigating cognitive processes in both human and non-human species. Topics include comparisons in episodic memory, metacognition, theory of mind, self-awareness, and language abilities.

PSYC BC3381 Theory of Mind and Intentionality. 4 points.
Not offered during 2022-23 academic year.
Prerequisites: BC1001 and one other Psychology course, or permission of the instructor. Enrollment limited to 15 students. Survey and critical analysis of the developmental and neurological research on theory of mind -the attribution of mental states like belief, desire, and knowledge to others- in humans and nonhuman animals. Emphasis on the role of intentionality, stages of acquisition, neurological and genetic bases, and deficits in theory of mind.

PSYC BC3384 Social Cognition. 4 points.
Not offered during 2022-23 academic year.
Prerequisites: BC 1001 and one of the following: BC1138/1137 Social Psychology, BC1115/1114 Cognitive Psychology, or permission of the instructor. Survey of research from the field of social cognition, exploring cognitive processes involved in social functioning. Topics include attention, interpretation, evaluation, judgment, attribution, and memory processes. Both controlled and automatic processes will be considered, and the roles of motives, goals, and affective variables will be discussed.

PSYC BC3390 Canine Cognition. 4 points.
Prerequisites: BC1001 and one other Psychology course. Enrollment limited to 15 students. Permission of the instructor is required. An examination of the scientific study of the domestic dog. Emphasis will be on the evolutionary history of the species; the dog’s social cognitive skills; canid perceptual and sensory capacities; dog-primate comparative studies; and dog-human interaction.

PSYC BC3394 Metacognition. 4 points.
Prerequisites: BC1001, and one psychology laboratory course; final enrollment determined on the first day of class. Metacognition is one of the latest psychological buzzwords, but what exactly is metacognition? Metacognition enables us to be successful learners, problem solvers, and decision makers, and as often been used synonymously with words such as language, awareness, and consciousness. In this seminar, we will examine various components of metacognition, including its role in learning and memory, and its existence in various non-human populations. In addition, we will explore the fragility of metacognition, including illusions of confidence and harmful control strategies that people use. Readings will include classic and important recent papers in the field, looking at metacognition as a higher-level cognitive process, and as knowledge individuals use to guide behavior.

PSYC BC3399 Humans and Machines. 4 points.
Prerequisites: (PSYC BC1001) and Instructor approval. This course will examine the social psychology of Human-Machine interactions, exploring the idea that well-established social psychological processes play critical roles in interactions with non-social objects. The first half of the seminar will examine the social psychology of perception across distinct sensory modalities (shape, motion, voice, touch), whereas the second half will focus on social psychological processes between humans and non-human entities (objects, computers, robots).

PSYC UN1001 The Science of Psychology. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Enrollment may be limited. Attendance at the first two class periods is mandatory.
Prerequisites: BLOCKED CLASS. EVERYONE MUST JOIN WAITLIST TO BE ADMITTED
Broad survey of psychological science, including sensation and perception; learning, memory, intelligence, language, and cognition; emotions and motivation; development, personality, health and illness, and social behavior. Discusses relations between the brain, behavior, and experience. Emphasizes science as a process of discovering both new ideas and new empirical results. PSYC UN1001 serves as a prerequisite for further psychology courses and should be completed by the sophomore year.
PSYC UN2250 Evolution of Cognition. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: PSYC UN1001 or PSYC UN1010 or the instructor’s permission.
A systematic review of different forms of cognition as viewed in the context of the theory of evolution. Specific topics include the application of the theory of evolution to behavior, associative learning, biological constraints on learning, methods for studying the cognitive abilities of animals, levels of representation, ecological influences on cognition, and evidence of consciousness in animals.

PSYC UN2280 Developmental Psychology. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Enrollment may be limited. Attendance at the first two classes is mandatory.

Prerequisites: PSYC UN1001 or PSYC UN1010 or the equivalent.
Prerequisites: PSYC UN1001 or PSYC UN1010 or the equivalent.
Introduction to the scientific study of human development, with an emphasis on psychobiological processes underlying perceptual, cognitive, and emotional development

PSYC UN3270 Computational Approaches to Human Vision (Seminar). 3 points.
This course will be offered in Fall 2016.

Prerequisites: some background in psychology and/or neurophysiology (e.g., PSYC UN1001, PSYC UN1010, PSYC UN2230, PSYC UN2450; BIOL UN3004 or BIOL UN3005) is desirable. See instructor if you have questions about your background. Some background in mathematics and computer science (e.g., calculus or linear algebra, a programming language) is highly recommended.
Study of human vision–both behavioral and physiological data–within a framework of computational and mathematical descriptions. Please contact Prof. Graham by e-mail (nvq1@columbia.edu) if you are interested in this course.

PSYC UN3290 Self: A Cognitive Exploration (Seminar). 4 points.
Not offered during 2022-23 academic year.

Prerequisites: PSYC UN1001 or PSYC UN1010, or the equivalent, plus the instructor’s permission.
What does it mean to have a sense of self? Is it uniquely human? Taking a cognitive perspective, we will discuss these questions as well as self-reflective and self-monitoring abilities, brain structures relevant to self-processing, and disorders of self. We will also consider the self from evolutionary, developmental, neuroscience, and psychopathological perspectives.

PSYC UN3445 The Brain & Memory. 4 points.
Prerequisites: (PSYC UN1010) or Equivalent introductory course in neuroscience or cognitive psychology and the instructor’s permission.
This seminar will give a comprehensive overview of episodic memory research: what neuroimaging studies, patient studies, and animal models have taught us about how the brain creates, stores, and retrieves memories.

PSYC UN3450 Evolution of Intelligence, Animal Communication, # Language. 3.00 points.
Prerequisites: PSYC UN1001 or PSYC UN1010, and the instructor’s permission.
A systematic review of the evolution language covering the theory of evolution, conditioning theory, animal communication, ape language experiments, infant cognition, preverbal antecedents of language and contemporary theories of language

PSYC GU4202 Theories of Change in Human Development. 4.00 points.
What are the agents of developmental change in human childhood?
How has the scientific community graduated from nature versus nurture, to nature and nurture? This course offers students an in-depth analysis of the fundamental theories in the study of cognitive and social development

PSYC GU4222 The Cognitive Neuroscience of Aging (Seminar). 4 points.
Prerequisites: courses in introductory psychology and cognitive psychology; and the instructor’s permission.
Comprehensive overview of various conceptual and methodologic approaches to studying the cognitive neuroscience of aging.
The course will emphasize the importance of combining information from cognitive experimental designs, epidemiologic studies, neuroimaging, and clinical neuropsychological approaches to understand individual differences in both healthy and pathological aging.

PSYC GU4225 CONSCIOUSNESS # ATTENTION. 4.00 points.
Prerequisites: the instructor’s permission; some basic knowledge of cognitive science and neuroanatomy is desirable, but not necessary.
Modern theories attempt to characterize the human mind in terms of information processing. But machines that process information do not seem to feel anything; a computer may for instance receive inputs from a video camera, yet it would be hard to imagine that it sees or experiences the vividness of colors like we do. Nobody has yet provided a convincing theory as to how to explain the subjective nature of our mental lives in objective physical terms. This is called the problem of consciousness, and is generally considered to be one of the last unsolved puzzles in science. Philosophers even debate whether there could be a solution to this problem at all. Students in this course may be recruited for participation in a voluntary research study. Students who choose not to participate in the study will complete the same course requirements as those who do, and an individual’s choice will not affect their grade or status as a student in the course

PSYC GU4229 Attention and Perception. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: (PSYC UN1010) or Equivalent introductory course in neuroscience or cognitive psychology.
This seminar aims to provide an in-depth overview of neuroscientific knowledge regarding two critical cognitive functions: attention and perception. For each topic, results from behavioral studies are combined with those from recent neurocognitive approaches – primarily neuropsychological and functional brain imaging studies – that reveal the underlying neural networks and brain mechanisms.
PSYC GU4239 Cognitive neuroscience of narrative and film. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: (PSYC UN1010 or Equivalent introductory course in neuroscience or cognitive psychology)
This seminar will provide a broad survey of how narrative stories, films, and performances have been used as tools to study cognition in psychology and neuroscience.

PSYC GU4242 Evolution of Language (Seminar). 3 points.
Not offered during 2022-23 academic year.
Prerequisites: PSYC UN1001 or
This seminar will consider the evolution of language at the levels of the word and grammar, in each instance, phylogenetically and ontogenetically. Since humans are the only species that use language, attention will be paid to how language differs from animal communication.

PSYC GU4244 Language and Mind. 4 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: PSYC UN1001 and Preferably, an additional course in psychology, focusing on cognition, development, or research methods. Instructor permission required.
This seminar explores the relationship between language and thought by investigating how language is mentally represented and processed; how various aspects of language interact with each other; and how language interacts with other aspects of cognition including perception, concepts, world knowledge, and memory. Students will examine how empirical data at the linguistic, psychological, and neuroscientific levels can bear on some of the biggest questions in the philosophy of mind and language and in psychology.

PSYC GU4270 Cognitive Processes (Seminar). 3 points.
Prerequisites: For undergraduates: one course in cognitive psychology or cognitive neuroscience, or the equivalent, and the instructor’s permission. Metacognition and control processes in human cognition. Basic issues include the cognitive mechanisms that enable people to monitor what they know and predict what they will know, the errors and biases involved in self-monitoring, and the implications of metacognitive ability for people’s self-determined learning, behavior, and their understanding of self.

PSYC GU4280 Core Knowledge (Seminar). 4 points.
Prerequisites: For undergraduates: courses in introductory psychology, cognitive or developmental psychology, and the instructor’s permission. Core Knowledge explores the origins and development of knowledge in infants and children, with an additional emphasis on evolutionary cognition. In this course, we will examine evidence from cognitive psychology, developmental psychology, comparative psychology, neuroscience, and linguistics to look at the child’s conception of objects, number, space, language, agency, morality and the social world. We will look at which aspects of knowledge are uniquely human, which are shared with other animals, and how this knowledge changes as children develop.

PSYC GU4281 The Psychology of Curiosity. 4 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: PSYC UN1001 or equivalent introductory psychology course
What is curiosity and how do we study it? How does curiosity facilitate learning? This course will explore the various conceptual and methodological approaches to studying curiosity and curiosity-driven learning, including animal and human studies of brain and behavior.

PSYC GU4287 Decision Architecture. 4 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: (PSYC UN2235) or an equivalent course on judgment and decision making, AND the instructor’s permission
This course reviews current research in the domain of decision architecture: the application of research in cognitive and social psychology to real-world situations with the aim of influencing behavior. This seminar will discuss recent and classic studies, both of decision theory and of applied decision research, to explore the effectiveness—as well as the limitations—of a selection of these behavioral “nudges.”

PSYC GU4289 The Games People Play: Psych of Strat Dec. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: (PSYC UN2235) or equivalent course on judgment and decision-making
Prerequisites: (PSYC UN2235) or equivalent course on judgment and decision-making A seminar course exploring strategic decision making (also known as behavioral game theory). This course examines the psychology underlying situations in which outcomes are determined by choices made by multiple decision makers. The prime objective will be to examine the use of experimental games to test psychological theories.

PSYC GU4435 Non-Mnemonic Functions of Memory Systems. 4 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: (PSYC UN1010) or equivalent introductory course in neuroscience or cognitive psychology
The past decade has produced an extraordinary amount of evidence that challenges the classic view of a “medial temporal lobe memory system”, namely, the idea that the medial temporal lobe plays a necessary role in long-term memory but not other cognitive functions. This course will introduce these challenges to the traditional perspective by exploring functions of the so-called memory system in domains outside of long-term memory.

SOAR AV4000 SOUND: Music, Math, and Mind. 3.00 points.
This course is a detailed and hands-on (ears-on) exploration of the fundamental physical, physiological, and psychological aspects of sound. Topics covered include sound waves and their physical nature, the propagation and speed of sound in different mediums, geological and other non-living sound sources, animal and insect sound generating strategies, sound perception mechanisms and abilities in different species, the physiology of human hearing and the structure of the human ear, psycho-acoustics and human sound perception, sonic illusions and tricks of the ear. In-class experiments and research make up the majority of the class. Each student will design and lead at least one experiment/demo session. Students also respond to creative weekly prompts about sound topics on courseworks. We also have visits with a number of special guests during the term.