MATH I, II, III: Students who have not previously studied calculus should begin with Calculus I. Students with 4 or higher on the Calculus AB or BC advanced placement test may start with Calculus II. Students with 5 on the Calculus BC test should start with Calculus III.

Honors Mathematics A: Students who have passed the Calculus BC advanced placement test with a grade of 5, and who have strong mathematical talent and motivation, should start with Honors Mathematics A. This is the most attractive course available to well-prepared, mathematically talented first-year students, whether or not they intend to be mathematics majors. Students who contemplate taking this course should consult with the instructor. If this is not possible ahead of time, they should register and attend the first class.

Chair: Daniela De Silva (Olin Professor of Mathematics)
Professors: Dave Bayer, Daniela De Silva (Olin Professor of Mathematics), Dusa McDuff (Joan Lyttle Birman ’48 Chair of Mathematics)
Assistant Professor: Alisa Knizel
Term Associate Professor: Lindsay Piechnik
Professors Emeriti: Joan Birman, Walter Neumann

Links to other faculty of Columbia University offering courses in Mathematics:
Faculty by Rank: http://www.math.columbia.edu/people/faculty-by-rank/
Alphabetical Faculty Listing: http://www.math.columbia.edu/people/alphabetical-faculty-listing/

Requirements for the Major
The major programs in both Mathematics and Applied Mathematics are appropriate for students who plan to continue their training in graduate school. The major in Mathematical Sciences combines the elements of Mathematics, Computer Science and Statistics. It is designed to prepare students for employment in business, administration, and finance, and also give excellent background for someone planning graduate study in a social science field. Students who plan to obtain a teaching qualification in mathematics should plan their course of study carefully with an advisor, since courses that are too far from mathematics do not count towards certification.

For a major in Mathematics: 14 courses (a minimum of 35 credits) as follows:
- Four courses in calculus or Honors Mathematics A-B, including Advanced Placement Credit. A student who places out of Calc I/II with AP credits, will need to take a replacement course.
- Six courses in mathematics numbered at or above 2000.
- Four courses in any combination of mathematics and cognate courses.

The courses in mathematics must include:

- MATH UN2010 LINEAR ALGEBRA (also satisfied by Honors Math A-B)
- MATH GU4041 INTRO MODERN ALGEBRA I (I)
- MATH GU4042 INTRO MODERN ALGEBRA II (II)
- MATH GU4061 INTRO MODERN ANALYSIS I (I)
- MATH GU4062 INTRO MODERN ANALYSIS II (II)
MATH UN3951 UNDERGRADUATE SEMINARS I (at least one term)
or MATH UN3952 UNDERGRADUATE SEMINARS II

* Note: It is strongly recommended that the sequences MATH GU4041 INTRO MODERN ALGEBRA I - MATH GU4062 INTRO MODERN ANALYSIS II and MATH GU4061 INTRO MODERN ANALYSIS I - MATH GU4062 INTRO MODERN ANALYSIS II be taken in separate years.

However, students who are not contemplating graduate study in mathematics may replace one or both of the two terms of MATH GU4061 INTRO MODERN ANALYSIS I - MATH GU4062 INTRO MODERN ANALYSIS II with one or two of the following courses:

- MATH UN2500 ANALYSIS AND OPTIMIZATION,
- MATH UN3007 COMPLEX VARIABLES,
- or MATH GU4032 FOURIER ANALYSIS

and may replace MATH GU4042 INTRO MODERN ALGEBRA II with

- MATH UN3020 NUMBER THEORY AND CRYPTOGRAPHY
- or MATH UN3025 MAKING, BREAKING CODES

In exceptional cases, the chair will approve the substitution of certain more advanced courses for those mentioned above.

For a major in Applied Mathematics: 14 courses (a minimum of 35 credits)

Four courses in calculus or Honors Mathematics A-B, including Advanced Placement Credit. A student that places out of Calc I/II with AP credits, will need to take a replacement course.

MATH UN2010 LINEAR ALGEBRA (also satisfied by Honors Math A-B)
MATH GU4061 INTRO MODERN ANALYSIS I
APMA E4901 SEM-PROBLEMS IN APPLIED MATH
APMA E4903 SEM-PROBLEMS IN APPLIED MATH
APMA E3900 UNDERGRAD RES IN APPLIED MATH
(APMA E3900 may be replaced, with approval, by another technical elective for seniors that involves an undergraduate thesis or creative research report)

Additional electives, to be approved by the Applied Math Committee, e.g.:

MATH UN2500 ANALYSIS AND OPTIMIZATION
MATH UN3007 COMPLEX VARIABLES
or MATH GU4065 or APMA E4204 HONORS COMPLEX VARIABLES
or FUNCTNS OF A COMPLEX VARIABLE
MATH UN3027 Ordinary Differential Equations
or MATH UN2030 PARTIAL DIFFERENTIAL EQUATIONS
or APMA E4200 PARTIAL DIFFERENTIAL EQUATIONS
MATH GU4032 FOURIER ANALYSIS
APMA E4300 COMPUT MATH INTRO-NUMERCL METH
APMA E4101 APPL MATH III DYNAMICAL SYSTMS
APMA E4150 APPLIED FUNCTIONAL ANALYSIS

For a major in Mathematical Sciences: 14 courses (a minimum of 38 credits):

6 from Mathematics, 5 from a combination of Statistics and Computer Science and 3 electives from a combination of Mathematics, Statistics, Computer Science.

Mathematics
Six required courses:
MATH UN1101 CALCULUS I
MATH UN1102 CALCULUS II
MATH UN1201 CALCULUS III
MATH UN2010 LINEAR ALGEBRA (also satisfied by Honors Math A-B)
MATH UN2000 INTRO TO HIGHER MATHEMATICS
MATH UN2030 ORDINARY DIFFERENTIAL EQUATIONS
or MATH UN3027 Ordinary Differential Equations

Possible further courses selected from the following:
MATH UN1202 CALCULUS IV
MATH UN2500 ANALYSIS AND OPTIMIZATION
MATH UN3020 NUMBER THEORY AND CRYPTOGRAPHY
MATH UN3025 MAKING, BREAKING CODES

Any 3 credit MATH course numbered 2000 or above

Statistics
Select at least one of the following:
STAT UN1101 INTRODUCTION TO STATISTICS
STAT UN1201 CALC-BASED INTRO TO STATISTICS

or equivalent

Other courses from the Statistics list (eg, STAT UN2102, STAT UN2103, STAT UN2104, STAT UN3105, STAT UN3106)

Computer Science
Select at least one of the following programming courses:
COMS W1002 COMPUTING IN CONTEXT
COMS W1004 Introduction to Computer Science and Programming in Java (preferred)
COMS W1005 Introduction to Computer Science and Programming in MATLAB
COMS W1007 Honors Introduction to Computer Science

Possible further courses selected from the following:
Other classes from the Computer Science Core
COMS W3203 DISCRETE MATHEMATICS
COMS W3210 Scientific Computation
ENGI E1006 INTRO TO COMP FOR ENG/APP SCI

More generally, electives may be any course with a prerequisite of at least one semester of Calculus, Statistics or Computer Science with the prior approval of the Mathematics Chair.

The Capstone Experience can be fulfilled by a significant thesis written under the supervision of faculty of any one of the three departments or by the Undergraduate Seminar in Mathematics.

NOTE: A student that places out of Calc I/II with AP credits, will need to take a replacement course.

For a major in Mathematics-Statistics: 14 courses (a minimum of 38 credits):

Mathematics
Select one of the following sequences:
MATH UN1101 CALCULUS I
- MATH UN1102 and CALCULUS II
- MATH UN1103 and CALCULUS III
- MATH UN2010 and LINEAR ALGEBRA
- MATH UN2500 and ANALYSIS AND OPTIMIZATION
MATH UN1207 HONORS MATHEMATICS A
- MATH UN1208 and HONORS MATHEMATICS B
- MATH UN2500 and ANALYSIS AND OPTIMIZATION

Statistics
Statistics required courses
STAT UN1201 CALC-BASED INTRO TO STATISTICS
STAT GU4203 PROBABILITY THEORY
STAT GU4204 STATISTICAL INFERENCE
STAT GU4205 LINEAR REGRESSION MODELS
And select one of the following courses:
STAT GU4207 ELEMENTARY STOCHASTIC PROCESS
STAT GU4262 Stochastic Processes for Finance
STAT GU4264 STOCHSTCS PROCSSES-APPLCTNS I
STAT GU4265 STOCHASTIC METHODS IN FINANCE

Computer Science
Select one of the following courses:
COMS W1004 Introduction to Computer Science and Programming in Java
COMS W1005 Introduction to Computer Science and Programming in MATLAB
COMS W1007 Honors Introduction to Computer Science
ENGI E1006 INTRO TO COMP FOR ENG/APP SCI
or an advanced Computer Science offering in programming

Electives
An approved selection of three advanced courses in mathematics, statistics, applied mathematics, industrial engineering and operations research, computer science, or approved mathematical methods courses in a quantitative discipline. At least one elective must be a Mathematics Department course numbered 3000 or above.

Students should plan to include a senior thesis or the Undergraduate Seminar in Mathematics in their program, in consultation with their advisors.

NOTE: Students must obtain approval from an adviser in each of the two departments before selecting electives.

NOTE: A student that places out of Calc I/II with AP credits, will need to take a replacement course.

For a major in Mathematics-Computer Science 15 courses (a minimum of 38 credits):

Mathematics
Four courses in calculus or Honors Mathematics A-B, including Advanced Placement Credit. A student that places out of Calc I/II with AP credits, will need to take a replacement course; and the 3 following courses:
MATH UN2010 LINEAR ALGEBRA (also satisfied by Honors Math A-B)
MATH GU4041 INTRO MODERN ALGEBRA I
MATH UN3020 NUMBER THEORY AND CRYPTOGRAPHY
or MATH UN3007 COMPLEX VARIABLES

Computer Science
COMS W1004 Introduction to Computer Science and Programming in Java
COMS W3134 Data Structures in Java
COMS W3157 ADVANCED PROGRAMMING
COMS W3203 DISCRETE MATHEMATICS
COMS W3261 COMPUTER SCIENCE THEORY
CSEE W3827 FUNDAMENTALS OF COMPUTER SYSTS

Note A: AP Computer Science with a grade of 4 or 5 or similar experience is a prerequisite for COMS W1007.

Electives: Two additional electives from computer science or math should be included. At least one should be level 3000 or higher; the second should be level 2000 or higher. With adviser approval, appropriate electives from other departments can be considered, such as Statistics or Applied Math.

CSOR W4231 ANALYSIS OF ALGORITHMS I
COMS W4241 Numerical Algorithms and Complexity
MATH UN3020 NUMBER THEORY AND CRYPTOGRAPHY
MATH BC2006 COMBINATORICS
MATH GU4061 INTRO MODERN ANALYSIS I
MATH UN2500 ANALYSIS AND OPTIMIZATION
MATH UN3007 COMPLEX VARIABLES
MATH UN3386 DIFFERENTIAL GEOMETRY
MATH GU4051 TOPOLOGY

Students seeking to pursue a Ph.D. program in either discipline are urged to take additional courses, in consultation with their advisers.

For a major in Economics and Mathematics, see the catalogue.

Requirement for the Minor in Mathematics
For a minor in Mathematics or Applied Mathematics: Six courses from any of the courses offered by the department except MATH UN1003 COLLEGE ALGEBRA-ANLYTC GEOMETRY, MATH UN1101 CALCULUS I / MATH UN1102 CALCULUS II. Some cognate courses are also acceptable with prior approval from the department chair.

Requirements for the Minor in Mathematical Sciences
The minor in Mathematical Sciences comprises 6 courses, at least two from Mathematics and one from each of Statistics and Computer Science. There should be a minimum of three courses in Statistics and Computer Science. Eligible courses are any listed in the Mathematical Sciences Major with the exception of Calculus I and II.
MATH UN1003 COLLEGE ALGEBRA-ALYNTC GEOMETRY. 3.00 points.
Prerequisites: score of 550 on the mathematics portion of the SAT completed within the last year, or the appropriate grade on the General Studies Mathematics Placement Examination. For students who wish to study calculus but do not know analytic geometry. Algebra review, graphs and functions, polynomial functions, rational functions, conic sections, systems of equations in two variables, exponential and logarithmic functions, trigonometric functions and trigonometric identities, applications of trigonometry, sequences, series, and limits.

Fall 2023: MATH UN1003

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1003</td>
<td>001/00080</td>
<td>M W 6:10pm - 7:25pm</td>
<td>Lindsay Piechnik</td>
<td>3.00</td>
<td>42/56</td>
</tr>
</tbody>
</table>

Spring 2024: MATH UN1003

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1003</td>
<td>001/12296</td>
<td>M W 11:40am - 12:55pm</td>
<td>Taeseok Lee</td>
<td>3.00</td>
<td>13/30</td>
</tr>
<tr>
<td>MATH 1003</td>
<td>002/12298</td>
<td>T Th 6:10pm - 7:25pm</td>
<td>Baiqing Zhu</td>
<td>3.00</td>
<td>14/30</td>
</tr>
</tbody>
</table>

MATH UN1101 CALCULUS I. 3.00 points.
Prerequisites: (see Courses for First-Year Students). Functions, limits, derivatives, introduction to integrals, or an understanding of pre-calculus will be assumed. (SC)

Fall 2023: MATH UN1101

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1101</td>
<td>001/10629</td>
<td>M W 10:10am - 11:25am</td>
<td>Mrudul Thatte</td>
<td>3.00</td>
<td>74/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>002/10630</td>
<td>M W 11:40am - 12:55pm</td>
<td>Nathan Chen</td>
<td>3.00</td>
<td>86/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>003/10631</td>
<td>M W 1:10pm - 2:25pm</td>
<td>Nathan Chen</td>
<td>3.00</td>
<td>88/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>004/10632</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Yin Li</td>
<td>3.00</td>
<td>41/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>005/10633</td>
<td>M W 4:10pm - 5:25pm</td>
<td>Qiao He</td>
<td>3.00</td>
<td>79/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>006/10634</td>
<td>M W 6:10pm - 7:25pm</td>
<td>Kevin Chang</td>
<td>3.00</td>
<td>28/30</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>007/10635</td>
<td>T Th 10:10am - 11:25am</td>
<td>Qiao He</td>
<td>3.00</td>
<td>77/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>008/10636</td>
<td>T Th 11:40am - 12:55pm</td>
<td>James Hotchkiss</td>
<td>3.00</td>
<td>90/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>009/10637</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>James Hotchkiss</td>
<td>3.00</td>
<td>89/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>010/10638</td>
<td>T Th 4:10pm - 5:25pm</td>
<td>Chaim Avram</td>
<td>3.00</td>
<td>29/30</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>011/10639</td>
<td>T Th 6:10pm - 7:25pm</td>
<td>Samuel DeHority</td>
<td>3.00</td>
<td>27/30</td>
</tr>
</tbody>
</table>

Spring 2024: MATH UN1101

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1101</td>
<td>001/00226</td>
<td>M W 6:10pm - 7:25pm</td>
<td>Lindsay Piechnik</td>
<td>3.00</td>
<td>100/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>002/12300</td>
<td>T Th 10:10am - 11:25am</td>
<td>Mrudul Thatte</td>
<td>3.00</td>
<td>61/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>003/12301</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Alex Xu</td>
<td>3.00</td>
<td>30/30</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>004/12302</td>
<td>T Th 6:10pm - 7:25pm</td>
<td>Amal Mattoo</td>
<td>3.00</td>
<td>30/30</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>005/12303</td>
<td>M W 2:40pm - 3:55pm</td>
<td>Mrudul Thatte</td>
<td>3.00</td>
<td>49/100</td>
</tr>
<tr>
<td>MATH 1101</td>
<td>006/12304</td>
<td>M W 4:10pm - 5:25pm</td>
<td>Jorge Pineiro</td>
<td>3.00</td>
<td>34/100</td>
</tr>
</tbody>
</table>
MATH UN1102 CALCULUS II. 3.00 points.
Prerequisites: MATH UN1101 or the equivalent.
Methods of integration, applications of the integral, Taylors theorem, infinite series. (SC)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1102</td>
<td>001/10640</td>
<td>M W 1:10pm - 2:25pm 203 Mathematics Building</td>
<td>Yoonjoo Kim</td>
<td>3.00</td>
<td>73/100</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>002/10641</td>
<td>M W 2:40pm - 3:55pm 203 Mathematics Building</td>
<td>Yoonjoo Kim</td>
<td>3.00</td>
<td>61/100</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>003/10642</td>
<td>M W 4:10pm - 5:25pm 417 Mathematics Building</td>
<td>Lucy Yang</td>
<td>3.00</td>
<td>37/64</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>004/10643</td>
<td>T Th 10:10am - 11:25am 407 Mathematics Building</td>
<td>Yilches Reyes</td>
<td>3.00</td>
<td>28/30</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>005/10644</td>
<td>Th 2:40pm - 3:55pm 407 Mathematics Building</td>
<td>Caleb Ji</td>
<td>3.00</td>
<td>18/30</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>006/10645</td>
<td>T Th 6:10pm - 7:25pm 417 Mathematics Building</td>
<td>Elliott Stein</td>
<td>3.00</td>
<td>43/64</td>
</tr>
</tbody>
</table>

Spring 2024: MATH UN1102

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1102</td>
<td>001/00027</td>
<td>T Th 2:40pm - 3:55pm Ll03 Diana Center</td>
<td>Lindsay Piechvik</td>
<td>3.00</td>
<td>60/60</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>002/12305</td>
<td>T Th 10:10am - 11:25am 203 Mathematics Building</td>
<td>Lucy Yang</td>
<td>3.00</td>
<td>61/100</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>003/12306</td>
<td>T Th 10:10am - 2:25pm 417 Mathematics Building</td>
<td>Tomasz Owsiak</td>
<td>3.00</td>
<td>55/64</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>004/12307</td>
<td>T Th 6:10pm - 7:25pm 520 Mathematics Building</td>
<td>Fan Zhou</td>
<td>3.00</td>
<td>10/30</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>005/12308</td>
<td>M W 11:40am - 12:55pm 520 Mathematics Building</td>
<td>Davis Lazowski</td>
<td>3.00</td>
<td>30/30</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>006/12309</td>
<td>M W 2:40pm - 3:55pm 312 Mathematics Building</td>
<td>Andres Fernandez Herrero</td>
<td>3.00</td>
<td>27/100</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>007/12310</td>
<td>M W 4:10pm - 5:25pm 312 Mathematics Building</td>
<td>Andres Fernandez Herrero</td>
<td>3.00</td>
<td>5/100</td>
</tr>
</tbody>
</table>

MATH UN1201 CALCULUS III. 3.00 points.
Prerequisites: MATH UN1101 or the equivalent.
Vendors in dimensions 2 and 3, complex numbers and the complex exponential function with applications to differential equations, Cramers rule, vector-valued functions of one variable, scalar-valued functions of several variables, partial derivatives, gradients, surfaces, optimization, the method of Lagrange multipliers. (SC)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1201</td>
<td>001/00082</td>
<td>T Th 10:10am - 11:25am 328 Milbank Hall</td>
<td>Alisa Knizel</td>
<td>3.00</td>
<td>50/56</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>002/10646</td>
<td>M W 8:40am - 9:55am 203 Mathematics Building</td>
<td>Gyuin Oh</td>
<td>3.00</td>
<td>96/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>003/10647</td>
<td>M W 10:10am - 11:25am 203 Mathematics Building</td>
<td>Gyuin Oh</td>
<td>3.00</td>
<td>108/110</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>004/10648</td>
<td>W 2:40pm - 3:55pm 142 Uris Hall</td>
<td>Konstantin Alehin</td>
<td>3.00</td>
<td>89/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>005/10649</td>
<td>T Th 11:40am - 12:55pm 203 Mathematics Building</td>
<td>Shaoyun Bai</td>
<td>3.00</td>
<td>79/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>006/10650</td>
<td>T Th 1:10pm - 2:25pm 203 Mathematics Building</td>
<td>Shaoyun Bai</td>
<td>3.00</td>
<td>86/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>007/10651</td>
<td>T Th 6:10pm - 7:25pm 312 Mathematics Building</td>
<td>Luis Fernandez</td>
<td>3.00</td>
<td>46/100</td>
</tr>
</tbody>
</table>

Spring 2024: MATH UN1201

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1201</td>
<td>001/00228</td>
<td>M W 10:10am - 11:25am Room TBA</td>
<td>Cristian Iovanov</td>
<td>3.00</td>
<td>71/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>002/00229</td>
<td>M W 11:40am - 12:55pm Room TBA</td>
<td>Cristian Iovanov</td>
<td>3.00</td>
<td>51/60</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>003/12317</td>
<td>M W 11:10pm - 2:25pm 207 Mathematics Building</td>
<td>Ivan Horozov</td>
<td>3.00</td>
<td>93/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>004/12318</td>
<td>T Th 11:40am - 12:55pm 312 Mathematics Building</td>
<td>Shaoyun Bai</td>
<td>3.00</td>
<td>46/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>005/12320</td>
<td>T Th 2:40pm - 3:55pm 207 Mathematics Building</td>
<td>Jeanne Boursier</td>
<td>3.00</td>
<td>100/100</td>
</tr>
<tr>
<td>MATH 1201</td>
<td>006/12322</td>
<td>T Th 4:10pm - 5:25pm 207 Mathematics Building</td>
<td>Jeanne Boursier</td>
<td>3.00</td>
<td>100/100</td>
</tr>
</tbody>
</table>
MATH UN1202 CALCULUS IV. **3.00 points.**
Prerequisites: MATH UN1102 and MATH UN1201 or the equivalent
Prerequisites: MATH UN1202 and MATH UN1201 or the equivalent
Multiple integrals, Taylor’s formula in several variables, line and surface integrals, calculus of vector fields, Fourier series. (SC)

Fall 2023: MATH UN1202

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1202</td>
<td>001/00083</td>
<td>M W 10:10am - 11:25am</td>
<td>Daniela De Silva</td>
<td>3.00</td>
<td>45/60</td>
</tr>
<tr>
<td>MATH 1202</td>
<td>002/10652</td>
<td>M W 6:10pm - 7:25pm</td>
<td>Mikhail Smirnov</td>
<td>3.00</td>
<td>25/100</td>
</tr>
</tbody>
</table>

Spring 2024: MATH UN1202

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1202</td>
<td>001/12325</td>
<td>M W 4:10pm - 5:25pm</td>
<td>Qiao He</td>
<td>3.00</td>
<td>52/64</td>
</tr>
<tr>
<td>MATH 1202</td>
<td>002/12327</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Qiao He</td>
<td>3.00</td>
<td>50/64</td>
</tr>
</tbody>
</table>

MATH UN1207 HONORS MATHEMATICS A. **4.00 points.**
Prerequisites: (see Courses for First-Year Students). The second term of this course may not be taken without the first. Multivariable calculus and linear algebra from a rigorous point of view. Recommended for mathematics majors. Fulfills the linear algebra requirement for the major. (SC)

Fall 2023: MATH UN1207

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1207</td>
<td>001/10654</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>603 Hamilton Hall</td>
<td>George Dragomir</td>
<td>4.00</td>
</tr>
</tbody>
</table>

MATH UN1208 HONORS MATHEMATICS B. **4.00 points.**
Prerequisites: (see Courses for First-Year Students). The second term of this course may not be taken without the first. Multivariable calculus and linear algebra from a rigorous point of view. Recommended for mathematics majors. Fulfills the linear algebra requirement for the major. (SC)

Spring 2024: MATH UN1208

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1208</td>
<td>001/12329</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>326 Uns Hall</td>
<td>George Dragomir</td>
<td>4.00</td>
</tr>
</tbody>
</table>

MATH UN2000 INTRO TO HIGHER MATHEMATICS. **3.00 points.**
Introduction to understanding and writing mathematical proofs.
Emphasis on precise thinking and the presentation of mathematical results, both in oral and in written form. Intended for students who are considering majoring in mathematics but wish additional training. CC/ GS: Partial Fulfillment of Science Requirement. BC: Fulfillment of General Education Requirement: Quantitative and Deductive Reasoning (QUA)

Fall 2023: MATH UN2000

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2000</td>
<td>001/00084</td>
<td>M W 10:10am - 11:25am</td>
<td>Dusa McDuff</td>
<td>3.00</td>
<td>28/55</td>
</tr>
</tbody>
</table>

Spring 2024: MATH UN2000

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2000</td>
<td>001/12330</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>520 Mathematics Building</td>
<td>Giulia Saoca</td>
<td>3.00</td>
</tr>
</tbody>
</table>

MATH BC2001 PERSPECTIVES IN MATHEMATICS. **1.00 point.**
Prerequisites: some calculus or the instructor’s permission. Intended as an enrichment to the mathematics curriculum of the first years, this course introduces a variety of mathematical topics (such as three dimensional geometry, probability, number theory) that are often not discussed until later, and explains some current applications of mathematics in the sciences, technology and economics

Spring 2024: MATH BC2001

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2001</td>
<td>001/00231</td>
<td>W 1:10pm - 2:00pm</td>
<td>Dusa McDuff</td>
<td>1.00</td>
<td>14/20</td>
</tr>
</tbody>
</table>

MATH BC2006 COMBINATORICS. **3.00 points.**

Spring 2024: MATH BC2006

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2006</td>
<td>001/00254</td>
<td>T Th 10:10am - 11:25am</td>
<td>Alisa Klintz</td>
<td>3.00</td>
<td>56/56</td>
</tr>
</tbody>
</table>

MATH UN2010 LINEAR ALGEBRA. **3.00 points.**
Matrices, vector spaces, linear transformations, eigenvalues and eigenvectors, canonical forms, applications. (SC)

Fall 2023: MATH UN2010

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2010</td>
<td>001/00085</td>
<td>M W 10:10am - 11:25am</td>
<td>405 Milbank Hall</td>
<td>Cristian Iovanov</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>002/00086</td>
<td>M W 11:40am - 12:55pm</td>
<td>202 Altschul Hall</td>
<td>Cristian Iovanov</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>003/10962</td>
<td>M W 2:40pm - 3:55pm</td>
<td>207 Mathematics Building</td>
<td>Siddhi Krishna</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>004/10963</td>
<td>T Th 8:40am - 9:55am</td>
<td>312 Mathematics Building</td>
<td>Andrew Blumberg</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>005/10964</td>
<td>T Th 4:10pm - 5:25pm</td>
<td>203 Mathematics Building</td>
<td>Marco Castronovo</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Spring 2024: MATH UN2010

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2010</td>
<td>001/12334</td>
<td>M W 10:10am - 11:25am</td>
<td>312 Mathematics Building</td>
<td>Amadou Bah</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>002/12335</td>
<td>M W 11:40am - 12:55pm</td>
<td>312 Mathematics Building</td>
<td>Amadou Bah</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>003/12336</td>
<td>T Th 11:40am - 12:55pm</td>
<td>203 Mathematics Building</td>
<td>Rostislav Akhmechet</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>004/12337</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>203 Mathematics Building</td>
<td>Rostislav Akhmechet</td>
<td>3.00</td>
</tr>
<tr>
<td>MATH 2010</td>
<td>005/12339</td>
<td>T Th 6:10pm - 7:25pm</td>
<td>417 Mathematics Building</td>
<td>Elliott Stein</td>
<td>3.00</td>
</tr>
</tbody>
</table>

MATH UN2020 Honors Linear Algebra. **3 points.**
Not offered during 2023-2024 academic year.

Prerequisites: MATH UN1201. A more extensive treatment of the material in MATH UN2010, with increased emphasis on proof. Not to be taken in addition to MATH UN2010 or MATH UN1207-MATH UN1208.
MATH UN2030 ORDINARY DIFFERENTIAL EQUATIONS. 3.00 points.
Prerequisites: MATH UN1102 and MATH UN1201 or the equivalent.

Spring 2024: MATH UN2030
Course Number: MATH 2030
Section/Call Number: 002/12346
Times/Location: T Th 11:40am - 12:55pm
Instruction: Xi Shen
Points: 3.00
Enrollment: 100/100

Fall 2023: MATH UN2030
Course Number: MATH 2030
Section/Call Number: 001/10966
Times/Location: M W 1:10pm - 2:25pm
Instruction: Ovidiu Savin
Points: 3.00
Enrollment: 72/100

MATH UN2500 ANALYSIS AND OPTIMIZATION. 3.00 points.
Prerequisites: MATH UN1102 and MATH UN1201 or the equivalent and MATH UN2010.

Spring 2024: MATH UN2500
Course Number: MATH 2500
Section/Call Number: 001/10972
Times/Location: T Th 1:10pm - 2:25pm
Instruction: Dorian Goldfeld
Points: 3.00
Enrollment: 83/100

Fall 2023: MATH UN2500
Course Number: MATH 2500
Section/Call Number: 001/10969
Times/Location: T Th 8:40am - 9:55am
Instruction: Xi Shen
Points: 3.00
Enrollment: 96/100

MATH UN3020 NUMBER THEORY AND CRYPTOGRAPHY. 3.00 points.
Prerequisites: one year of calculus.
Prerequisites: one year of calculus. Prerequisite: One year of Calculus. Congruences. Primitive roots. Quadratic residues. Contemporary applications

Spring 2024: MATH UN3020
Course Number: MATH 3020
Section/Call Number: 001/12358
Times/Location: M W 10:10am - 11:25am
Instruction: Yoonjoo Kim
Points: 3.00
Enrollment: 66/100

Fall 2023: MATH UN3020
Course Number: MATH 3020
Section/Call Number: 001/10972
Times/Location: T Th 1:10pm - 2:25pm
Instruction: Dorian Goldfeld
Points: 3.00
Enrollment: 83/100

MATH UN3025 MAKING, BREAKING CODES. 3.00 points.
Prerequisites: (MATH UN1101 and MATH UN1102 and MATH UN1201) and MATH UN2010.
Prerequisites: (MATH UN1101 and MATH UN1102 and MATH UN1201) and MATH UN2010. A concrete introduction to abstract algebra. Topics in abstract algebra used in cryptography and coding theory

Fall 2023: MATH UN3025
Course Number: MATH 3025
Section/Call Number: 001/10972
Times/Location: T Th 1:10pm - 2:25pm
Instruction: Dorian Goldfeld
Points: 3.00
Enrollment: 83/100

MATH UN3027 Ordinary Differential Equations. 3 points.
Prerequisites: MATH UN3027 and MATH UN2010 or the equivalent. Corequisites: MATH UN2010

Spring 2024: MATH UN3027
Course Number: MATH 3027
Section/Call Number: 001/12359
Times/Location: T Th 1:10pm - 2:25pm
Instruction: Simon Brendle
Points: 3.00
Enrollment: 100/100

MATH UN3028 PARTIAL DIFFERENTIAL EQUATIONS. 3.00 points.
Prerequisites: MATH UN3027 and MATH UN2010 or the equivalent
Prerequisites: (MATH UN2010 and MATH UN2030) or the equivalent introduction to partial differential equations. First-order equations. Linear second-order equations; separation of variables, solution by series expansions. Boundary value problems

Spring 2024: MATH UN3028
Course Number: MATH 3028
Section/Call Number: 001/12359
Times/Location: T Th 1:10pm - 2:25pm
Instruction: Simon Brendle
Points: 3.00
Enrollment: 100/100

MATH UN3050 DISCRETE TIME MODELS IN FINANC. 3.00 points.
Prerequisites: (MATH UN1102 and MATH UN1201) or (MATH UN1101 and MATH UN1102 and MATH UN1201) and MATH UN2010 Recommended: MATH UN3027 (or MATH UN2030 and SIEO W3600).
Prerequisites: (MATH UN1102 and MATH UN1201) or (MATH UN1101 and MATH UN1102 and MATH UN1201) and MATH UN2010 Recommended: MATH UN3027 (or MATH UN2030 and SIEO W3600).
Elementary discrete time methods for pricing financial instruments, such as options. Notions of arbitrage, risk-neutral valuation, hedging, term-structure of interest rates

Spring 2024: MATH UN3050
Course Number: MATH 3050
Section/Call Number: 001/12360
Times/Location: M W 6:10pm - 7:25pm
Instruction: Mikhail Smirnov
Points: 3.00
Enrollment: 62/64
MATH UN3386 DIFFERENTIAL GEOMETRY. 3.00 points.
Prerequisites: MATH UN1202 or the equivalent.
Local and global differential geometry of submanifolds of Euclidean 3-space. Frenet formulas for curves. Various types of curvature for curves and surfaces and their relations. The Gauss-Bonnet theorem.

Fall 2023: MATH UN3386
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 3386 001/10973 M W 2:40pm - 3:55pm 520 Mathematics Building Richard 3.00 18/50

MATH UN3901 SUPERVISED READINGS I. 1.00-3.00 points.
Prerequisites: The written permission of the faculty member who agrees to act as sponsor (sponsorship limited to full-time instructors on the staff list), as well as the permission of the Director of Undergraduate Studies. The written permission must be deposited with the Director of Undergraduate Studies before registration is completed. Guided reading and study in mathematics. A student who wishes to undertake individual study under this program must present a specific project to a member of the staff and secure his or her willingness to act as sponsor. Written reports and periodic conferences with the instructor. Supervising Readings do NOT count towards major requirements, with the exception of an advanced written approval by the DUS

Fall 2023: MATH UN3901
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 3901 001/15172 M W 10:10am - 11:25am 306 Mathematics Richard 1.00-3.00 6/6
MATH 3901 002/18813 M W 4:10pm - 5:25pm 520 Mathematics Richard 1.00-3.00 1/1
MATH 3901 003/20896 M W 10:10am - 11:25am 306 Mathematics Richard 1.00-3.00 1/1
MATH 3901 004/20897 M W 11:30am - 12:45pm 520 Mathematics Richard 1.00-3.00 1/1
MATH 3901 005/21101 M W 11:30am - 12:45pm 520 Mathematics Richard 1.00-3.00 1/1
MATH 3901 006/21160 M W 11:30am - 12:45pm 520 Mathematics Richard 1.00-3.00 1/1
MATH 3901 007/21351 M W 11:30am - 12:45pm 520 Mathematics Richard 1.00-3.00 1/1

MATH UN3902 SUPERVISED READINGS II. 1.00-3.00 points.
Prerequisites: The written permission of the faculty member who agrees to act as sponsor (sponsorship limited to full-time instructors on the staff list), as well as the permission of the Director of Undergraduate Studies. The written permission must be deposited with the Director of Undergraduate Studies before registration is completed. Guided reading and study in mathematics. A student who wishes to undertake individual study under this program must present a specific project to a member of the staff and secure his or her willingness to act as sponsor. Written reports and periodic conferences with the instructor. Supervising Readings do NOT count towards major requirements, with the exception of an advanced written approval by the DUS

Spring 2024: MATH UN3902
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 3902 001/18557 M W 10:10am - 11:25am 306 Mathematics Richard 1.00-3.00 1/1

MATH UN3951 UNDERGRADUATE SEMINARS I. 3.00 points.
Prerequisites: Two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies’ permission.
Prerequisites: Two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies’ permission. The subject matter is announced at the start of registration and is different in each section. Each student prepares talks to be given to the seminar, under the supervision of a faculty member or senior teaching fellow.

Fall 2023: MATH UN3951
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 3951 001/00757 M W 11:30am - 12:45pm 520 Mathematics Richard 3.00 47/64

MATH UN3952 UNDERGRADUATE SEMINARS II. 3.00 points.
Prerequisites: Two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies’ permission.
Prerequisites: Two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies’ permission. The subject matter is announced at the start of registration and is different in each section. Each student prepares talks to be given to the seminar, under the supervision of a faculty member or senior teaching fellow. Prerequisite: two years of calculus, at least one year of additional mathematics courses, and the director of undergraduate studies’ permission

Spring 2024: MATH UN3952
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 3952 001/00233 M W 10:10am - 11:25am 306 Mathematics Richard 3.00 55/80

MATH UN3997 SUPERVISED INDIVIDUAL RESEARCH. 1.00-4.00 points.
Prerequisites: The written permission of the faculty member who agrees to act as a supervisor, and the director of undergraduate studies permission. For specially selected mathematics majors, the opportunity to write a senior thesis on a problem in contemporary mathematics under the supervision of a faculty member

Fall 2023: MATH UN3997
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 3997 001/00800 M W 10:10am - 11:25am 520 Mathematics Richard 1.00-4.00 2/5
MATH 3997 002/00856 M W 10:10am - 11:25am 520 Mathematics Richard 1.00-4.00 1/5

MATH UN3998 SUPERVISED INDIVIDUAL RESEARCH. 3.00 points.
Prerequisites: The written permission of the faculty member who agrees to act as a supervisor, and the permission of the Director of Undergraduate Studies. For specially selected mathematics majors, the opportunity to write a senior thesis on a problem in contemporary mathematics under the supervision of a faculty member.
MATH GU4007 ANALYTIC NUMBER THEORY. 3.00 points.
Prerequisites: MATH UN3007
Prerequisites: MATH UN3007 A one semester course covering the theory of modular forms, zeta functions, L-functions, and the Riemann hypothesis. Particular topics covered include the Riemann zeta function, the prime number theorem, Dirichlet characters, Dirichlet L-functions, Siegel zeros, prime number theorem for arithmetic progressions, SL(2, Z) and subgroups, quotients of the upper half-plane and cusps, modular forms, Fourier expansions of modular forms, Hecke operators, L-functions of modular forms.

Spring 2024: MATH GU4007
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4007 | 001/12361 | T Th 2:40pm - 3:55pm 307 Mathematics Building | Dorian Goldfeld | 3.00 | 19/19

MATH GU4032 FOURIER ANALYSIS. 3.00 points.
Prerequisites: three terms of calculus and linear algebra or four terms of calculus.
Prerequisites: three terms of calculus and linear algebra or four terms of calculus. Fourier series and integrals, discrete analogues, inversion and Poisson summation formulae, convolution. Heisenberg uncertainty principle. Stress on the application of Fourier analysis to a wide range of disciplines.

Fall 2023: MATH GU4032
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4032 | 001/10974 | M W 10:10am - 11:25am 520 Mathematics Building | Simon Brendle | 3.00 | 25/50

MATH GU4041 INTRO MODERN ALGEBRA I. 3.00 points.
Prerequisites: MATH UN1102 and MATH UN1202 and MATH UN2010 or the equivalent.
Prerequisites: MATH UN1102 and MATH UN1202 and MATH UN2010 or the equivalent. The second term of this course may not be taken without the first. Groups, homomorphisms, normal subgroups, the isomorphism theorems, symmetric groups, group actions, the Sylow theorems, finitely generated abelian groups.

Fall 2023: MATH GU4041
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4041 | 001/10975 | T Th 10:10am - 11:25am 312 Mathematics Building | Michael Harris | 3.00 | 75/100

Spring 2024: MATH GU4041
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4041 | 001/12362 | M W 10:10am - 11:25am 417 Mathematics Building | Yujie Xu | 3.00 | 64/64

MATH GU4042 INTRO MODERN ALGEBRA II. 3.00 points.
Prerequisites: MATH UN1102 and MATH UN1202 and MATH UN2010 or the equivalent.
Prerequisites: MATH UN1102 and MATH UN1202 and MATH UN2010 or the equivalent. The second term of this course may not be taken without the first. Rings, homomorphisms, ideals, integral and Euclidean domains, the division algorithm, principal ideal and unique factorization domains, fields, algebraic and transcendental extensions, splitting fields, finite fields, Galois theory.

Fall 2023: MATH GU4042
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4042 | 001/10976 | T Th 10:10am - 11:25am 520 Mathematics Building | Amadou Bah | 3.00 | 12/50

Spring 2024: MATH GU4042
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4042 | 001/12363 | M W 2:40pm - 3:55pm 417 Mathematics Building | Konstantin Aleshkin | 3.00 | 44/64

MATH GU4043 ALGEBRAIC NUMBER THEORY. 3.00 points.
Prerequisites: MATH GU4041 and MATH GU4042 or the equivalent.
Prerequisites: MATH GU4041 and MATH GU4042 or the equivalent. Algebraic number fields, unique factorization of ideals in the ring of algebraic integers in the field into prime ideals. Dirichlet unit theorem, finiteness of the class number, ramification. If time permits, p-adic numbers and Dedekind zeta function.

Spring 2024: MATH GU4043
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4043 | 001/12364 | T Th 4:10pm - 5:25pm 307 Mathematics Building | Gyujin Oh | 3.00 | 19/20

MATH GU4044 REPRESENTATONS OF FINITE GROUPS. 3.00 points.
Prerequisites: MATH UN2010 and MATH GU4041 or the equivalent.
Prerequisites: MATH UN2010 and MATH GU4041 or the equivalent. Finite groups acting on finite sets and finite dimensional vector spaces. Group characters. Relations with subgroups and factor groups. Arithmetic properties of character values. Applications to the theory of finite groups: Frobenius groups, Hall subgroups and solvable groups. Characters of the symmetric groups. Spherical functions on finite groups.

Fall 2023: MATH GU4044
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4044 | 001/10977 | T Th 1:10pm - 2:25pm 307 Mathematics Building | Aise Johan de Jong | 3.00 | 5/19

MATH GU4045 ALGEBRAIC CURVES. 3.00 points.
Prerequisites: (MATH GU4041 and MATH GU4042) and MATH UN3007
Prerequisites: (MATH GU4041 and MATH GU4042) and MATH UN3007. Plane curves, affine and projective varieties, singularities, normalization, Riemann surfaces, divisors, linear systems, Riemann-Roch theorem.

Spring 2024: MATH GU4045
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
MATH 4045 | 001/12366 | M W 2:40pm - 3:55pm 307 Mathematics Building | Nathan Chen | 3.00 | 9/20
MATH W4046 Introduction to Category Theory. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Not offered during 2023-2024 academic year.

Prerequisites: MATH W4041.
Categories, functors, natural transformations, adjoint functors, limits and colimits, introduction to higher categories and diagrammatic methods in algebra.

MATH GU4051 TOPOLOGY. 3.00 points.
Prerequisites: (MATH UN1202 and MATH UN2010) and rudiments of group theory (e.g., MATH GU4041). MATH UN1208 or MATH GU4061 is recommended, but not required.
Prerequisites: (MATH UN1202 and MATH UN2010) and rudiments of group theory (e.g., MATH GU4041). MATH UN1208 or MATH GU4061 is recommended, but not required. Metric spaces, continuity, compactness, quotient spaces. The fundamental group of topological space. Examples from knot theory and surfaces. Covering spaces.

MATH GU4052 INTRODUCTION TO KNOT THEORY. 3.00 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: MATH GU4051 Topology and / or MATH GU4061 Introduction To Modern Analysis I (or equivalents). Recommended (can be taken concurrently): MATH UN2010 linear algebra, or equivalent.
Prerequisites: MATH GU4051 Topology and / or MATH GU4061 Introduction To Modern Analysis I (or equivalents). Recommended (can be taken concurrently): MATH UN2010 linear algebra, or equivalent. The study of algebraic and geometric properties of knots in R#3, including but not limited to knot projections and Reidemeisters theorem, Seifert surfaces, braids, tangles, knot polynomials, fundamental group of knot complements. Depending on time and student interest, we will discuss more advanced topics like knot concordance, relationship to 3-manifold topology, other algebraic knot invariants.

MATH GU4053 INTRO TO ALGEBRAIC TOPOLOGY. 3.00 points.
Prerequisites: MATH UN2010 and MATH GU4041 and MATH GU4051
Prerequisites: MATH UN2010 and MATH GU4041 and MATH GU4051
The study of topological spaces from algebraic properties, including the essentials of homology and the fundamental group. The Brouwer fixed point theorem. The homology of surfaces. Covering spaces.

MATH GU4061 INTRO MODERN ANALYSIS I. 3.00 points.
Prerequisites: MATH UN1202 or the equivalent, and MATH UN2010. The second term of this course may not be taken without the first.
Prerequisites: MATH UN1202 or the equivalent, and MATH UN2010. The second term of this course may not be taken without the first. Real numbers, metric spaces, elements of general topology, sequences and series, continuity, differentiation, integration, uniform convergence, Ascoli-Arzela theorem, Stone-Weierstrass theorem.

Spring 2024: MATH GU4061

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4061</td>
<td>T Th 11:40am - 12:55pm</td>
<td>Sam Collingbourne</td>
<td>3.00</td>
<td>44/64</td>
</tr>
<tr>
<td></td>
<td>417 Mathematics Building</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 4062</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>Sam Collingbourne</td>
<td>3.00</td>
<td>40/64</td>
</tr>
<tr>
<td></td>
<td>417 Mathematics Building</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATH GU4062 INTRO MODERN ANALYSIS II. 3.00 points.
Prerequisites: MATH UN1202 or the equivalent, and MATH UN2010. The second term of this course may not be taken without the first.
Prerequisites: MATH UN1202 or the equivalent, and MATH UN2010. The second term of this course may not be taken without the first. Power series, analytic functions, Implicit function theorem, Fabini theorem, change of variables formula, Lebesgue measure and integration, function spaces.

Spring 2024: MATH GU4062

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4062</td>
<td>M W 1:10pm - 2:25pm</td>
<td>Ivan Corwin</td>
<td>3.00</td>
<td>11/110</td>
</tr>
<tr>
<td></td>
<td>203 Mathematics Building</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATH GU4065 HONORS COMPLEX VARIABLES. 3.00 points.
Prerequisites: (MATH UN1207 and MATH UN1208) or MATH GU4061
Prerequisites: (MATH UN1207 and MATH UN1208) or MATH GU4061
A theoretical introduction to analytic functions. Holomorphic functions, harmonic functions, power series, Cauchy-Riemann equations, Cauchy's integral formula, poles, Laurent series, residue theorem. Other topics as time permits: elliptic functions, the gamma and zeta function, the Riemann mapping theorem, Riemann surfaces, Nevanlinna theory.

Spring 2024: MATH GU4065

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4065</td>
<td>T Th 11:40am - 12:55pm</td>
<td>Eric Urban</td>
<td>3.00</td>
<td>7/35</td>
</tr>
<tr>
<td></td>
<td>407 Mathematics Building</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATH GU4071 Introduction to the Mathematics of Finance. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: MATH UN1202 and MATH UN3027 and STAT W4150 and
SEIO W4150, or their equivalents.
The mathematics of finance, principally the problem of pricing of
derivative securities, developed using only calculus and basic probability.
Topics include mathematical models for financial instruments, Brownian
motion, normal and lognormal distributions, the Black-Scholes formula,
and binomial models.

MATH GU4081 INTRO-DIFFERENTIABLE MANIFOLDS. 3.00 points.
Prerequisites: (MATH GU4051 or MATH GU4061) and MATH UN2010
Prerequisites: (MATH GU4051 or MATH GU4061) and MATH UN2010
Concept of a differentiable manifold. Tangent spaces and vector fields.
The inverse function theorem. Transversality and Sard’s theorem.
forms and Stokes theorem

MATH GU4155 PROBABILITY THEORY. 3.00 points.
Prerequisites: MATH GU4061 or MATH UN3007
Prerequisites: MATH GU4061 or MATH UN3007 A rigorous introduction
to the concepts and methods of mathematical probability starting with
basic notions and making use of combinatorial and analytic techniques.
Generating functions. Convergence in probability and in distribution.
Discrete probability spaces, recurrence and transience of random walks.
Infinite models, proof of the law of large numbers and the central limit
theorem. Markov chains

MATH GU4392 INTRO TO QUANTUM MECHANICS II. 3.00 points.
Continuation of GU4391. This course will focus on quantum mechanics,
paying attention to both the underlying mathematical structures as
well as their physical motivations and consequences. It is meant to
be accessible to students with no previous formal training in quantum
theory. The role of symmetry, groups and representations will be stressed.

SIEO W3600 INTRO PROBABILITY/STATISTICS. 4.00 points.
SIEO W4150 INTRO-PROBABILITY # STATISTICS. 3.00 points.

Cross-Listed Courses
Computer Science
COMS S3251 Computational Linear Algebra. 3 points.
Not offered during 2023-2024 academic year.

Prerequisites: two terms of calculus.
Computational linear algebra, solution of linear systems, sparse linear
systems, least squares, eigenvalue problems, and numerical solution of
other multivariate problems as time permits.

COMS W4203 Graph Theory. 3 points.
Lect: 3.

Prerequisites: (COMS W3203)
General introduction to graph theory. Isomorphism testing, algebraic
specification, symmetries, spanning trees, traversability, planarity,
drawings on higher-order surfaces, colorings, extremal graphs, random
graphs, graphical measurement, directed graphs, Burnside-Polya
counting, voltage graph theory.

COMS W3203 DISCRETE MATHEMATICS. 4.00 points.
Lect: 3.

Prerequisites: Any introductory course in computer programming.
Prerequisites: Any introductory course in computer programming. Logic
and formal proofs, sequences and summation, mathematical induction,
binomial coefficients, elements of finite probability, recurrence relations,
equivalence relations and partial orderings, and topics in graph theory
(including isomorphism, traversability, planarity, and colorings)

Industrial Engineering and Operations Research
CSOR E4010 GRAPH THEORY: COMBINATL VIEW. 3.00 points.
Lect: 3. Not offered during 2023-2024 academic year.

Prerequisites: Linear Algebra, or instructor’s permission.
An introductory course in graph theory with emphasis on its
combinatorial aspects. Basic definitions, and some fundamental topics in
graph theory and its applications. Topics include trees and forests graph
coloring, connectivity, matching theory and others

MATH 4081
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 4081 001/000234 M W 10:10am - 11:25am 3.00 23/40
 LIT3 Diana Center

MATH GU4155
Course Number Section/Call Number Times/Location Instructor Points Enrollment
MATH 4155 001/12373 T Th 2:40pm - 3:55pm 3.00 49/49
 520 Mathematics Building

MATH GU4392
Course Number Section/Call Number Times/Location Instructor Points Enrollment
COMS 3203 001/11213 M W 2:40pm - 3:55pm 3.00 121/180
 301 Pupin Laboratories

COMS 3203 002/12070 T Th 10:10am - 11:25am 3.00 200/200
 301 Uris Hall

COMS 3203 002/12071 T Th 11:40am - 12:55pm 3.00 200/200
 301 Uris Hall

COMS 3203 001/11214 M W 4:10pm - 5:25pm 3.00 81/180
 428 Pupin Laboratories

COMS 3203 002/11213 M W 2:40pm - 3:55pm 4.00 121/180
 301 Pupin Laboratories