Mission
The Neuroscience and Behavior major provides a strong background in the neural underpinnings of behavior and cognition. It is intended for students who plan to pursue a research career in neuroscience or a related discipline. Students electing this major are exposed to basic courses in biology, psychology and statistics, and to advanced courses in neuroscience and behavior.

Student Learning Goals
Students graduating with a major in Neuroscience and Behavior should be able to attain the following outcomes:

- acquire a strong intellectual foundation in neuroscience
- develop competence in the interpretation and evaluation of neuroscience research
- understand the role of experimentation in neuroscience
- learn basic methods of experimental design and hypothesis testing
- acquire effective oral presentation skills
- demonstrate a capability to write a scientific paper
- understand statistical approaches to data analysis.

Student Learning Outcomes
Upon successfully completing the major, students should have the ability to

- discuss neuroscience phenomena from many different levels of organization (e.g., explain how the destruction of myelin in people with multiple sclerosis leads to cognitive and motor deficits);
- describe the basic features of nervous system development, organization, signaling, integration, and higher-level processing;
- explain the neural basis of sensory-motor integration, learning and the generation of complex behaviors;
- conceive of, implement, and present an original research project;
- generate a testable hypothesis and develop a controlled experimental design;
- perform modern scientific measurement techniques;
- write an original research paper.

As an alternative to the Neuroscience and Behavior major, students may pursue an interdisciplinary program by majoring in either Biology or Psychology and taking a minor in the other discipline.

Core Faculty: Peter Balsam (Chair), Kara Pham (Departmental Representative), Elizabeth Bauer, BJ Casey, Maria de la Paz Fernandez, John Glendinning, Gabrielle Gutierrez, Russell Romeo, Rae Silver, Alex White

The new NSBV curriculum requires the completion of a minimum of 13 courses (5 core neuroscience courses; 3 introductory courses from cognate disciplines; 3 elective courses; a year-long research seminar counting as 2 courses) and a senior thesis. All NSBV majors must take 5 core neuroscience courses that provide foundational knowledge and laboratory training. No more than 2/5 core neuroscience courses can be taken outside the NSBV Department, including Columbia University or other institutions. For many courses, NSBV majors have multiple options. Reflecting the interdisciplinary nature of our discipline, students can select introductory and elective courses offered in other departments either at Barnard or Columbia. Furthermore, students have the option of selecting elective courses in one suggested track – cognitive/behavioral, computational, or molecular.

Five Core Neuroscience Courses
- NSBV BC1001 INTRODUCTION TO NEUROSCIENCE
- NSBV BC2001 LABORATORY IN NEUROSCIENCE
- NSBV BC3001 SYSTEMS AND BEHAVIORAL NEUROSCIENCE
- BIOL BC3362 MOLECULAR # CELLULAR NEUROSCIENCE
- NSBV BC3002 STATISTICS AND EXPERIMENTAL DESIGN

Three Introductory Courses from Other Disciplines
One course must be Introduction to Cellular and Molecular Biology (BIOL BC1502 + lab)
BIOL BC1503; the other courses (1lect; 1lect+lab) from cognate disciplines (Biology, Chemistry, Computer Science, Physics, or Psychology)

Senior Research Seminar
- NSBV BC3593 RSRCH/SEM-NEUROSCNCE#BEHAVIOR
- NSBV BC3594 RSRCH/SEM-NEUROSCNCE#BEHAVIOR

Three Elective Courses
Approved electives are listed on the department webpage. One elective course must be a 3000-level seminar.

Fall 2023
- NSBV BC1001 INTRODUCTION TO NEUROSCIENCE
- NSBV BC2001 LABORATORY IN NEUROSCIENCE
- NSBV BC2004 Fundamentals in Computational Neuroscience Models
- NSBV BC3405 NEUROSCIENCE OF TRAUMA
- NSBV BC3361 CELLULAR # MOLECULAR NEUROSCIENCE
- NSBV BC3381 Visual Neuroscience: From the Eyeball to the Mind’s Eye
- NSBV BC3376 PSYCHOBIOLOGY OF INFANT DEVELOPMENT
- NSBV BC3384 RHYTHMS OF THE BRAIN
- NSBV BC3387 TOPICS IN NEUROETHICS
- NSBV BC3388 MODELS OF NEUROPSYCHIATRIC DISORDERS
- NSBV BC3385 NEUROETHOLOGY
- NSBV BC3390 NEUROCIRCUITS: NEUROGENETICS AND PRINCIPLES OF NEURONAL CONNECTIVITY
- NSBV BC3591 NEUROSCIENCE GUIDED RESEARCH
- NSBV BC3593 RSRCH/SEM-NEUROSCNCE#BEHAVIOR
- NSBV BC3099 INDEPENDENT STUDY

Spring 2022
- NSBV BC1001 INTRODUCTION TO NEUROSCIENCE
- NSBV BC2001 LABORATORY IN NEUROSCIENCE
Past Courses
(Courses not offered in 2021-2022 academic year)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSBV BC3367</td>
<td>Transformative Landmarks in Neuroscience</td>
</tr>
<tr>
<td>NSBV BC3383</td>
<td>Neuropharmacology and Behavior</td>
</tr>
<tr>
<td>NSBV BC3394</td>
<td>Neurobiology of Social Behaviors</td>
</tr>
<tr>
<td>NSBV BC3377</td>
<td>Adolescent Neurobehavioral Development</td>
</tr>
<tr>
<td>NSBV BC3392</td>
<td>PSYCHOBIOLOGY OF STRESS</td>
</tr>
</tbody>
</table>